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Abstract

We study welfare-optimal decision rules for committees that repeatedly take a
binary decision. Committee members are privately informed about their payoffs
and monetary transfers are not feasible. In static environments, the only strategy-
proof mechanisms are voting rules which are inefficient as they do not condition on
preference intensities. The dynamic structure of repeated decision-making allows
for richer decision rules that overcome this inefficiency. Nonetheless, we show that
often simple voting is optimal for two-person committees. This holds for many prior
type distributions and irrespective of the agents’ patience.
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1 Introduction

Simple voting rules are known to be inefficient when a majority with weak preferences
outvotes a minority with strong preferences. For instance, if ten out of one hundred
citicens of a village are willing to pay $20 for changing a law, but the rest has a willingness-
to-pay of $1 for keeping the old one, votes would be 90 to 10 against the new law, althought
it would be efficient to pass it.

Money could be used as a tool to elicit preference intensities and thereby to implement
the efficient allocation, but in many situations there are moral or other considerations that
prevent the use of monetary means. Instead, this paper examines the possibilities of using
the dynamic structure of environments, where group decisions have to be made repeatedly,
in order to condition on preference intensities. In fact, repeated decision problems are
ubiquitous in everyday life, ranging from examples in parliament to hiring committees.
As Buchanan and Tullock (1962) emphasize, “any rule must be analyzed in terms of the
results it will produce, not on a single issue, but on the whole set of issues.”

Consider the following example, which illustrates the possibility of increasing sensit-
ivity to preference intensities: Assume that the decision rule prescribes to accept if at
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least one of two agents is in favor of the proposal, unless the other agent uses one of his
limited possibilities to exercise a veto. In this situation, agents are faced with a trade-off
between the current and future periods. If an agent exercises a veto now, the decision
rule decides in her favor, but at the cost of fewer possibilities to use a veto in the future,
which reduces the agent’s continuation value. Intuitively, agents will use their veto right
only if their preference against the proposal exceeds some threshold. This has the effect
that more refined information about the agents’ preferences is elicited and potentially a
more efficient allocation can be implemented.

Given these ideas, the question is why we see so many decision rules that use simple
majority voting in every period, and, more generally, which decision rule is the best in
terms of providing the highest welfare to the agents. In this paper, we tackle the latter
question and show that, surprisingly, voting rules are optimal among many reasonable
decision rules. This provides a hint to the answer for the former question on why voting
is used so universally.

To be specific, we analyze a model with two agents who are repeatedly presented
a proposal that they need to either accept or reject. Each agent is privately informed
about her willingness-to-pay (or value) for accepting the proposal; she can be in favor or
against the proposal and the intensity of preference is unknown to the designer. Values
are distributed independently across time and agents, and agents are symmetric ex-ante.
In a related setting, Jackson and Sonnenschein (2007) establish the strong result that
the first-best allocation can be approximated arbitrarily well in Bayes-Nash equilbrium.
Implementation in Bayes-Nash equilibrium imposes strong assumption on the information
available to the agents; specifically, it is required that each agent’s belief about the other
agents equals the prior belief. Moreover, the mechanism they propose hinges stronly
on the assumption that there are many identical decision problems and that agents are
patient. In contrast, we consider mechanisms that are more robust and hence easier to
implement. We focus on mechanisms that implement decision rules in periodic ex-post
equilibrium, where the strategies of the agents are optimal even if they come to know
the current values of the other agents. This requirement renders incentives robust to
uncontrolled changes in the information structure as well as some deviations of the other
player.

We provide a characterization of incentive compatible decision rules in terms of the
allocation in a given period and the continuation values the rule promises, which shows
that the class of decision rules compatible with our equilibrium concept is relatively large.
Methodologically, we view continuation values as substitutes for money, which enables
us to relate any given decision rule to a static mechanism with money. We show that
if preference distributions satisfy an increasing hazard rate condition, then voting rules
are optimal within two classes of mechanisms. First, they are optimal among decision
rules that satisfy unanimity, i.e., rules that never contradict the decision that both agents
would unanimously agree on. This is a reasonable robustness requirement since one could
expect that agents will not adhere to the decision rule if they unanimously agree to do
something else. Second, if type distributions are neutral across alternatives, i.e., densities
are symmetric around zero, then voting rules are also optimal among all deterministic
decision rules. Therefore, if the type distributions are neutral across alternatives, we get
the summarizing result that any decision rule yielding higher welfare than every voting
rule has both weaknesses of not satisfying unanimity and not being deterministic. This



provides a rationale for voting rules in the setting we consider. Our results are not only
robust with respect to the exact specification of the information structure, but also does
not depend on the number of decision problems, or the discount factor, and the results
also hold if decision problems differ over time.

Relation to the Literature

Buchanan and Tullock (1962) provide an early analysis of collective decision making in
dynamic settings. They restrict their examination to standard voting rules, but consider
non-sincere equilibria. In a seminal contribution, Casella (2005) designs a specific decision
rule for a dynamic setting comparable to ours. He proposes the concept of storable votes:
In each period, each agent receives an additional vote and can use some of his votes for
the current decision or, alternatively, he can store his additional vote for future usage.
By shifting their votes inter-temporally, agents can concentrate their votes on decisions
for which they have a strong preference. This decision rule thereby takes preference
intensities into account, and increases welfare if there are only two agents. Hortala-Vallve
(2012) analyzes a similar proposal (called qualitative voting) for a static setting (meaning
that agents are completely informed about their preferences in all decision problems when
making the first decision), in which agents face a number of binary decisions.

Going one step further, one can systematically look for the “best” decision rule. Jack-
son and Sonnenschein (2007) take a mechanism design approach and show that for a
static setting the efficient outcome can be approximated even in the absence of money,
by linking a large number of independent copies of the decision problem. This result ex-
tends to dynamic settings, as long as individuals are arbitrarily patient. This surprising
result hinges critically on a number of strong assumptions: each decision problem has
to be an identical copy, the designer is required to have the correct prior belief, agents
need to be arbitrarily patient and their beliefs about other agents have to be identical
to the common prior. In an attempt to find more robust decision rules, Hortala-Vallve
(2010) characterizes the set of strategy-proof decision rules for a static problem. Given
that strategy-proofness is a strong requirement in multi-dimensional settings, it is not too
surprising that voting rules are the only decision rules that satisfy this restriction.

In contrast, our focus on periodic ex-post equilibrium implies that on the one hand,
the set of implementable decision rules is very rich, but on the other hand our results are
robust and the optimal mechanism is bounded away from attaining the first-best.

The paper is structured as follows: In Section [2| we present our model in detail. The
results are presented in Section [3| and discussed in Section 4] Some proofs are omitted
from the main text and relegated to the appendix.

2 Model

There are two agents who are repeatedly faced with a proposal and have to accept or
reject each proposal. Periods are indexed by ¢ = 0,1,... € T' = N. The type of an
agent ¢ in a given period t is denoted by 6#;; and indicates his willingness-to-pay for the
proposal. Type spaces and distribution functions are the same for each period and each
agent, denoted by ©; and F' respectively, and types are drawn independently across time



and agents. We denote by 0, the random variable corresponding to the type of agent i,
and by 6; a type profile which is an element of the product type space ©.

In each period, a decision z; € {0,1} has to be made. We denote the sequence of
decisions up to period t by 2z, and similarly for a sequence of types 6. Accordingly, for

an infinite sequence we write z7 .

Mechanisms

In this model a dynamic version of the revelation principle holds (Myerson (1986), for
similar arguments see Pavan, Segal and Toikka (2008)), hence we can focus on truthfully
implementable direct revelation mechanisms.

Definition 1. A mechanism x is a sequence of decision rules {xi}ier that map past
decisions and type profiles into a distribution over decisions in the current period:

xi: O x {0,131 = [0,1].

Preferences

Agents have linear von-Neumann-Morgenstern utility functions and there are no monetary
payments. Given a period ¢ and a decision z; for this period, the utility of agent ¢ with
type O; is vy (i, ©) = Oy Agents discount the future with the common discount factor
§. Consequently, utility of agent 7 with type sequence 67 is

V(6T T 25 0,04

teT

for the decision sequence z”.

Equilibrium Concept and Incentive Compatibility

We consider implementation in periodic ex-post equilibrium (for a formal definition, see
Miller 2012), which is equivalent to agents playing an ex-post equilibrium in each period.
In every period t, agent ¢ learns about his preference type 6;;, which is his private in-
formation, and then sends a report r;. The history known to the designer in period t,
ht = (x'=1, 771, consists of past decisions and past reports.

Given a mechanism Yy, we can write the value function for agent i:

Wi(h',0,) = Sug Osexe (W' i, 0_3) + 5E@t+1Wi(ht+1, §t+1) (1)
Tit€0;

Here, h'™! is the history in the next period, consisting of x;(h',ri,0_i) and (ry, 0_;)
appended to ht. The valuation function specifies, given any history hf, and the current
type profile 6;, the highest utility the agent can possibly obtain for some report ry,
assuming that she reports optimally in the future and the other agents report truthfully.
Given a specific history A, the mechanism y induces an allocation rule and continuation
functions which we will denote

xt(0t> = Xt(ht, Qt) and
wit(6t> = 5E®t+1VVi(ht+1u étJrl)'



If the current period is clear from the context, we will also drop the subscript t. The pair
(x4, wy) is called the stage mechanism after history h, and we say that w, is generated by
the mechanism y. A stage mechanism is admissible if it is generated by some mechanism

X-
Definition 2. A mechanism is periodic ex-post incentive compatible (IC) if for every
period t and for all histories h' the following holds: For every 0_; and every 0; we have

that
st (Oit, 0_it) + Wit (e, 0_ie) > O3 (ris, 0—it) + Wit (132, 0_i) (2)
for all reports r; € ©;.
See, e.g., Athey and Miller (2007), Bergemann and Valiméki (2010). The definition in
particular states that if a mechanism is incentive compatible, then every stage mechanism

for all histories is incentive compatible. The following lemma can be proved using the
Envelope Theorem (which is a standard exercise in mechanism design).

Lemma 1. A mechanism is IC if and only if for each agent i the following two conditions
hold:

1. Monotonicity of x: x(0;,0_;) < x(0},0_;) for 6; < 0.

2. Payoff equivalence: Fix 6, € ©;. Then for all 0

0;
0;

Since the term HAzx(é27 0_;) + wi(éz-, 0_;) is independent of 6;, we will write hi(0_;) for
it. Note, however, that h;(0_;) does depend on the particular choice of 6;.

Objective

For a given stage mechanism we can write down the expected welfare going forward from
period t as

Unt(x) = Upt(z,w) := Eg, [(61 + 6)x4(0) + wy(0) + wgt(ﬁ)].

This is the period-t expected discounted welfare that the agents receive after history h’.
The aim of this paper is to identify welfare-optimal mechanisms, that is, mechanisms y
that solve

max U(x) = Up(x), s.t. xisIC.
X

Lemma [2[ in the appendix provides a useful way to rewrite the objective function in
terms of the allocation rule z and h;(6_;).



3 Results

The aim of this section is to identify mechanisms that are optimal in the above stated
sense. The following conditions on F' which we need to derive our results are standard in
the mechanism design literature.

Condition 1 (Monotone Hazard Rates). The hazard rate lfgf(’g_) is non-decreasing in 0;
f(0:)

F(0;)

and the reversed hazard rate s non-increasing in 0;.

A woting rule x is a rule where () only depends on {sgn(6;)}i=12. A voting mech-
anism is a mechanism where the allocation rule after all histories is a voting rule. In each
of the two subsections below we will present a setting in which the welfare-maximizing
dynamic decision rule is a voting mechanism.

The proofs in each part will proceed as follows: First, we show that under the appro-
priate assumptions stage mechanisms consisting of a voting rule and promising the same
continuation payoffs for all type profiles are weakly welfare-superior to all other stage
mechanisms. Then we make use of the following proposition to deduce that also the best
dynamic mechanism uses a voting rule in every period. For this step to work it is helpful
that optimal stage mechanisms are of as simple a form as voting mechanisms.

Proposition 1. Assume that for every history h' and admissible stage mechanism (x;, w;)
in period t, there exists an admissible stage mechanism (I, W), where &; is a voting rule
and w; 18 constant, and such that

Uht (ill't, U}t) < Uht (.f't, u?t)
Then a voting mechanism is among the optimal mechanisms.

Proof. We start with any dynamic mechanism x and transform it into a mechanism that
uses a voting rule in every period and such that U weakly increases. Start with ¢ = 0. The
assumption states that there exists a voting stage mechanism (g, 1wg) with constant 1y
and such that U(Zg, wo) > U(zo, wp). Since the voting stage mechanism is admissible and
promises constant continuations, these continuations can be generated by a mechanism
that is independent of h'. Denote by x’ this new dynamic mechanism. Since 7/ and
w} are independent of h', we know (again by the assumption) that there exists a voting
stage mechanism (&, w;) with constant w; and such that Upi(Zq,dq) > Upi(x), w]) for
all h'. Again, w; can be generated by a mechanism that does not condition on histories
h?. Now if we let x” be the mechanism that arises if one exchanges the stage mechanism
(x},w)) in X’ for (Z1,w), we know that x” is still incentive compatible: All promised
continuations in period 0 change by the same amount, independent of the history A' and
in particular independent of 8y,. Repeating this argument inductively for ¢ > 2 completes
the proof. n

Unanimity

Unanimity requires the mechanism to always adhere to a decision to which both agents
agree. For example, if both types in some period are positive the mechanism has to choose
x; = 1 for sure. Formally, the condition is defined as follows:



Definition 3. A mechanism is called unanimous if, for every period and all possible
histories, x(6) =1 if 8 > 0 and x(8) =0 if 6 < 0.

Note that mechanisms not satisfying this requirement will probably have legitimacy
problems: Although all parties involved in the decision process opt in favor of the proposal,
the mechanism forces its rejection. Furthermore, if agents are not able to collectively com-
mit to the decision prescribed by the mechanism, then mechanisms satisfying unanimity
are the only feasible mechanisms. Also note that mechanisms proposed in the literature are
not excluded by this assumption (see, e. g., Jackson and Sonnenschein 2007, Casella 2005).
In the next subsection we will see that even when relaxing this restriction, for certain
distribution functions only non-deterministic decision rules can yield a higher expected
welfare than voting rules.

Theorem 1. Suppose that F' satisfies Condition[1. Then a voting mechanism is optimal
among all unanimous mechanisms.

Proof. The proof consists of establishing the preconditions of Proposition . So let (z,w)
be a stage mechanism after some history A’ (since we are only concerned with unanimous
mechanisms, z satisfies unanimity). Set (61,6,) = (0,0) and let k; be the resulting
redistribution functions implied by Lemma . Let 0* € argmaxycg h1(0) + ho(0). We
first show that setting hy(6y) = hqi(0%) for all 05 and hy(6;) = ho(6*) for all 6; does not
decrease Upt(x,w).

Since so far we have not changed x, by Lemma [2| it is enough to show that the terms
involving the redistribution functions do not decrease in this step. But this follows from

< / [ha(6%) + hn (6%)] dF (B).

Next we show that changing = to a voting rule does not decrease welfare. It is enough to
consider the regions where 6; < 0,6, > 0 and 6; > 0,0y < 0 because the mechanism is
unanimous. By Lemma |3 and the choice of (f;,6s;), we know that the first term in (),
which for the region 6; < 0,60y > 0 amounts to

[ sty o oauroanria

is maximized by setting x to 1, as soon as Condition [1| holds. Since the same is true for
the region where 6; > 0,60, < 0, we have constructed a voting stage mechanism that is
weakly welfare superior to the old stage mechanism.

Let (2’,w") denote the new stage mechanism. The proof is complete if we can show
that w’ is constant and can be generated. Constancy of w’ holds for any stage mechanism
where 2’ is a voting rule and the functions A/ are constant. More specifically, w} is equal to
hi(0*). Since the old mechanism was unanimous, w;(6*,0*) = h;(6*). Because w;(0*, 6*)
could be generated, it follows that w’ can be generated. O




Neutrality of Alternatives

In this section, we show that in some situations we can derive optimality of voting mech-
anisms even if unanimity does not hold. This shows that the restriction imposed in the
previous section does in many cases not reduce welfare.

We assume that the distribution of types is neutral across alternatives, i.e., it is sym-
metric around 0. This is an important special case of our general model and has been
analyzed, among others, by Carrasco and Fuchs (2011). For instance, this assumption
is satisfied if a committee has to decide among two proposals that are valued equally ex
ante. Specifying one alternative as the default, the distribution of valuations for changing
from the default to the alternative proposal is symmetric around 0.

Theorem 2. Suppose F satisfies Condition[]] and is neutral across alternatives. Then a
voting mechanism is optimal among all deterministic mechanisms.

The proof of Theorem [2] is presented in the appendix. Similar arguments as in the
last subsection can be given for restricting attention to deterministic mechanisms: First,
stochastic mechanisms are difficult to implement and face legitimacy problems in practice.
It is barely conceivable that a parliament would introduce decision protocols that involve
random elements. Second, all proposed mechanisms in the literature and mechanisms
observed in practice are usually deterministic and therefore not excluded from our analysis.
Numerical simulation also suggests that expected welfare can be improved only slightly
using stochastic mechanisms. The following corollary combines Theorem |1jand Theorem
and summarizes all properties one has to give up in order to improve upon voting rules.

Corollary 1. Assume F satisfies Condition [1] and is neutral across alternatives. Then
every decision rule that is strictly welfare-superior to any voting rule is stochastic and
does not satisfy unanimaity.

4 Discussion

We have seen that despite the absence of money as a means for implementing rules
other than majority voting, the possibility to condition decision rules on the past gives
us the possibility to design dynamic decision rules that take preference intensities into
account. However, we have shown that for committees consisting of two players the
welfare maximizing dynamic decision rule nonetheless consists of simple majority voting
in every period. This holds unless desirable properties of the decision rule are given
up. We therefore provide a possible explanation for why majority voting is used almost
universally in practice.

One extension of our model is to allow for correlation of agent types over time. How-
ever, this restricts the class of incentive compatible mechanisms since the quasi-linear
separation of continuation payoffs from the payoff in the current period disappears. While
voting rules would still be optimal in this restricted class, our model without correlation
shows that voting rules are also optimal in the larger class.

A major open problem is the question as to what extent our results generalize to more
than two agents. We believe that a substantial difficulty towards progress in this direction
is to understand in how far continuation values can be redistributed among the agents.



Appendix

Helpful Lemmata

The following shows how the welfare of every incentive compatible mechanism can be ex-
pressed in terms of the allocation function and the functions h; defined following Lemmal[T]

Lemma 2. Let x be an incentive compatible mechanism and define

—F(0:) A
{ 7(0; if 0; < 05,

S—

8,’ = —
¥(0;) %9(31) otherwise.

Then for every history ht we have

Uht(X)Z/e[1/1(91)+1/1(92)]$(9)dp(9)+/@ h2(91)dF(91)+/® hi(62)dF(02).  (4)

Proof. First note that

Ui (x / / 0,2(0) + 022(0) + i (0) + ws(0)| dF (62)dF (). (5)

and by Lemma )
wi(0) = /9 +(8,0.:)dB — 0,2(0) + hi(0_). (6)

i

Using integration by parts, we first rewrite the term

/: [ /: (8, G—i)dﬁ] £(6,)do

7 9 0
_ / m_wwﬂ>(/<ﬁmwmw>—/x@ﬁwmmm
0; 0; S~ ]

=0

:Al}£$ / f o "

Now plug @ into (5)) and use . to complete the proof. O

The next lemma implies, together with Condition |1} that the first part of is max-
imized by a constant allocation function whenever only one part of the function v is
considered.

Lemma 3. Suppose that (01, 02) is non-increasing in 61 and 02, and that [ (0)dF(0) <
oo. Then the problem

max / ’ / L (00.0) - £(6s. 60)AF (62)AF (6))

s.t. x is non-decreasing in 0
0<z(0) <1

is solved optimally either by setting x*(6) = 1 or x*(6) = 0.

9



Proof. Suppose to the contrary that there exists a function z(f) that achieves a strictly
higher value. Define z'(6;,60s) := F;) fcd:%(él,ﬂ)dF(ﬁ). This function is feasible for

(d)—F(c
the above problem given that Z is feasibﬁe and, by Chebyshev’s inequality, for all 6,
/ 0(01,0:)3 (61, 0:)AF ()
d 1 d
< I .
< / V(O 0IF(0) / (01, 02)dF (6,)
d
= / w(ﬁl, 92)1‘/(91, eg)dF(eg)

Since this inequality holds for every 6, we also have

//¢91,62 (01, 02)dF (0,)dF(6,) < //wel,@ (01, 02)AF (0:)dF (0.

Defining x” (61, 05) = FO—Fa) F @ f '(01,6)dF(0,) and again applying Chebyshev’s inequal-
ity as above, we get that

b pd b pd
/ / ’w(el, 92)1”(91, 92)dF(92)dF(01) S / / @Z)(Ql, 92)1’”(91, 92)dF(92)dF(01)

Since the objective function is linear in x, the constant function z” is weakly dominated
by either x = 1 or x = 0, contradicting the initial claim. [

Proof of Theorem 2

Proof. We establish the preconditions of Proposition [} Fix an arbitrary history h; and
consider the stage mechanism (z,w) employed after this history. Let W := mazg{w(0) +
we(0)} and let 6, be an optimizer. We normalize w such that wi(6,,) = wa(6,) = 0 by
decreasing w; by w;(6,,) for all . This does not affect incentive compatibility. After the
normalization we have

We start with some preliminaries where we derive a set of inequalities that are satisfied
by every incentive compatible stage mechanism for which the above inequality holds.

Preliminaries:

Set (6,05) == (6,6), let h; denote the resulting redistribution functions implied by Lemma
[ and define g;(6) := — [ 2(8,6-,)dB. 1t follows from Lemma [1] that w,(§) =

—gi(0) + hi(0_;). Let h* '__man{hl( ) + hy(—0)} — 0 and 6* be a maximizer. Normalize
h such that hy(0*) = h* + 6 and hao(—6*) = 0 by increasing hy(z2) and decreasing ho(z1)
by ho(—6%). The definition of h* implies

hi(0) + ho(—0) < B*+0  for all 0, (8)

10



Figure 1: Proof of Theorem [2| The shaded area indicates the profiles § where z(0) = 1.

and wq (6, —0) + w(0, —0) < 0 implies
hi(0) + ho(=0) < g1(=0,0) + g2(—0,0)

=—/9 2(8,0)d8 /

< /6 z(B,0)dB < 6 +6. (9)

-6
By plugging 6* into @ and using the definition of h*, it follows that h* < 6*.

Define a := inf{6; | x(61, h*) = 1}. If there does not exist ¢, such that z(6,,h*) = 1,
set a := 6. Without loss we can assume that a > —h*, since otherwise we can “mirror”
the mechanism on the dotted line shown in Figure [I][Y] Let #; > a. Then expanding and
rearranging wy (61, 6*) + we (61, 6*) < 0 yields

ho(61) < —(h* +6) + g1(61,0%) + g2(61,6%)

01 6~
= —h"—0+0, — 6*)dB + 6 — 6,,8)d
+ 6, /9 x(B,07)dp + /9 x(6y, B)dp
B
:_h*+9*—6*+h*—/ x(6,, B)dp
0

:_/9 +(61, B)dB, (10)

where in the second equality we made use of the fact that x(5,60*) = 1 for § > a and
x(01,8) =1 for 6; > a, h* < 8 < 0* (see Figure[l). Similar arguments will be used more
often in the equalities below.

Let (z#,w?”) be the mirrored mechanism, then x%(6;,0y) = 1 — 2(—03, —6;), wz#(el, 0) =
w_;(—02,—071). The new mechanism is IC iff. the old mechanism is IC and by our symmetry assumptions
the mirrored mechanism yields the same welfare. Also, h* and #* will not be changed by this operation.

11



Define b := inf{f, | z(—h*,0;) = 1} (if there is no ¢ such that x(—h*,6y) = 1, set
b:=0) and let 3 < b. Then wq(—06%,02) + wo(—6*%,02) < 0 implies

hi(02) < g1(0%,02) + g2(0%, 02)
—o~ 9
=0- 0-)dB — —0*, 8)d
0 /9 x(B,6,)dB /9 x(—=0%, B)dp

7
_ / (8, 6)dB. (11)

—@*

Since by Lemma [I| an incentive compatible stage mechanism is completely determined
by x and h, we will in the following change x and h in a number of consecutive steps
while making sure that x stays monotone and we never decrease the welfare U™ (z, h) =
UM (z,w). At the end of the proof we will make sure that the resulting mechanism is
admissible. First, we increase hy(6;) for 6; > a and h(6s) for 6, < b until and

hold with equality since this trivially weakly increases welfare.

Step 1:

In this step we will change the variables x(6) with 0 € A := {(61,62) | 61 > a,02 < h*},
ho(61) with 6; > a and hy(6,) with 6y < h*. If we change h; and hsy such that and
(10) continue to hold with equality, we can express changes of all the variables in terms
of changes of . Making use of the fact that for 6, < h*, is equivalent to

h1(‘92)=/ $(57Q2)d57

and by substituting and , we can rewrite the the part of Uyt that depends on
changes of the variables x(f) for 8 € A as

{(02) )
+/9 a x(ﬁ,ez)dﬁdF(eg)—/a/e z(6h, B)dB dF'(61)

[ [ [ ] e

Lemma [3| implies that this term is maximized by setting () = 0 or 1 for § € A. To see
that we cannot gain by setting z(f) = 1 we bound

vt = [ [ [+ gt aroairo

- / [?533 T ) NG
s / H&u f | arerey

12



Here, the second equality is due to the symmetry of F' around zero, the third equality
is because the integral over [0, —a] x [6, —a] vanishes, and the inequality is due to log-
concavity of F' and the fact that —a < h*. Hence, we weakly increase welfare by setting
xto0or1in A and hy; and hy according to and , respectively.

Step 2:

For this step define the set B = {0, > —h*,0y > h* | x(01,0:) = 0}. Set x(¢) = 1 for
0 € B and hy(03) = h*+6 for all 0, for which there is a 0, such that (6,,62) € B. We claim
that this does not decrease Uy:. Since allocative efficiency improved in this step, we only

need to check that the sum of promised continuations increased. First, let (6;,62) € B.
Then is equivalent to

7 (0) = /_ 2(8,0,)d5.

h*

Continuations before this change are given by

0

01 01
ha(61) + h1(62) +/9 x(83,05)dB = hy(0) +/ x(B3,0:)ds +/0 z(B3,02)dB = ha(6h).

_h*
After the change we get

91 92

x(ﬂ,eg) dﬁ — ‘92 +/ x(@l,ﬁ) dﬁ = h2(‘91)
—— N——

h*

hg(@l) + h* +§—(91+/
0
=1 =1

Fixing (61,602) € B, the claim can similarly be shown for points of the form (67, 62) and
(01, 0,) where 6, > 0,.

Step 3:

We claim that setting z(6) = 1 or () = 0 for 6 € [0, —h*] x [h*,0] increases U~. This
follows from the fact that, since, ignoring the part which depends on h;, the objective
function in the area where we change = has the form required by Lemma [3| Symmetry
implies that x(f) = 0 gives the same welfare as z(0) = 1.

Step 4:

Note that the original mechanism satisfied
hi(—0) + hy(0) < h* + 0.

Therefore, welfare is not decreased by setting hy(6) := 0 and hy(—0) = h* + 0 for § < —b.

Note that the changed mechanism satisfies wy (0, —0) + wo(6, —0) < 0: For a < 0 this
holds as we assumed and to be binding in Step 1, hence ¢1(0, —0) = ¢2(0, —60) =
hi(—0) = hy(f) = 0. For —h* < 6 < a, this holds as continuations weren’t changed for
these values (changed Pivot payments were offset by changes in the A functions, as
was assumed to hold with equality in Step 1). For —b < 6 < —h* this holds as constraints
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were assumed to bind in Step 2. For § < § < —b this holds as hy(—0) + hy(0) < h* +60 =
91(6; _9) + 92<97 _0>

The fact that wy (0, —0) + wy (0, —0) < 0 implies that hy(—6) + ha(0) < ¢1(0, —0) +
g2(0,—0). We can increase h so that equality holds, thereby again improving the mech-
anism, ending up with the following stage mechanism:

0 else,
[0 if 05 < h*
1(02) = { h*+0 else,

h2(6’1) = 0.

We call this class of mechanisms phantom dictatorship with parameter h*.

Step 5:

So far we have shown that every stage mechanism can be modified until it is a phantom
dictatorship while weakly improving welfare. To prove that for every stage mechan-
ism there is a simple voting stage mechanism with weakly higher welfare, we show that
simple voting weakly welfare-dominates every phantom dictatorship: Indeed, the optimal
phantom dictatorship is given by the parameter h* = E[f]. Therefore, symmetry of F
around 0 implies that the optimal phantom dictatorship is characterized by h* = 0, which
has the same aggregate welfare as unanimity voting.

The voting stage mechanism we have constructed so far has the continuations profile
wi(0) = wy(f) = 0 for all §. It remains to show that this mechanism is admissible.
But this follows from the fact that (0,0) was an implementable continuation profile of
the original mechanism (namely, at the type profile 6,,). We therefore established the
conditions for Proposition [T, which completes the proof of the theorem. O

References

Athey, S. and Miller, D. A. (2007). Efficiency in repeated trade with hidden valuations, Theor-
etical Economics 2(3): 299-354.

Bergemann, D. and Valiméki, J. (2010). The dynamic pivot mechanism, Econometrica
78(2): 771-789.

Buchanan, J. M. and Tullock, G. (1962). The calculus of consent: logical foundations of consti-
tutional democracy, University of Michigan Press.

Carrasco, V. and Fuchs, W. (2011). From equals to despots: The dynamics of repeated decision
taking in partnerships with private information, Technical report.

Casella, A. (2005). Storable votes, Games and Economic Behavior 51(2): 391-419.

Hortala-Vallve, R. (2010). Inefficiencies on linking decisions, Social Coice and Welfare 34: 471
486.

Hortala-Vallve, R. (2012). Qualitative voting, Journal of Theoretical Politics 24: 526-554.

14



Jackson, M. O. and Sonnenschein, H. F. (2007). Overcoming incentive constraints by linking
decisions, Econometrica 75(1): 241-257.

Miller, D. (2012). Robust collusion with private information, Review of Economic Studies
79(2): 778-811.

Myerson, R. B. (1986). Multistage games with communication, Econometrica 54(2): 323-358.

Pavan, A., Segal, I. and Toikka, J. (2008). Dynamic mechanism design: Incentive compatibility,
profit maximization and information disclosure, Carlo Alberto Notebooks 84, Collegio Carlo

Alberto.

15



	Introduction
	Model
	Results
	Discussion

