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S.1. Schur-Convex Functions and Functionals

CONSIDER XF AND XG TO BE UNIFORM, discrete random variables, each taking n values
xF = (x1

F� � � � � x
n
F) and xG = (x1

G� � � � � x
n
G), respectively. Then

xF ≺dm xG ⇔ F−1 ≺G−1 ⇔ G≺ F�

where ≺dm denotes the classical discrete majorization relation due to Hardy, Littlewood,
and Polya. Thus, discrete majorization is equivalent to the present majorization relation
applied to quantile functions. A function V : Rn → R is Schur-convex (concave) if V (x) ≥
V (y) (V (x) ≤ V (y)) whenever x �dm y. If V is a symmetric function, and if all its partial
derivatives exist, then the Schur–Ostrovski criterion says that V is Schur-convex (concave)
if and only if

(xi − xj)

(
∂V

∂xi

− ∂V

∂xj

)
≥ (≤)0 for all x�

It is useful to have a similar characterization for continuous majorization. Chan, Proschan,
and Sethuraman (1987) showed that a law-invariant,1 Gâteaux-differentiable functional
V :L1(0�1) → R respects the majorization relation on L1(0�1), if and only if its Gâteaux-
derivatives in specially defined directions are non-positive. The considered directions are
of the form

h= λ11(a�b) + λ21(c�d)

with 0 ≤ a < b < c < d ≤ 1 and λ1 ≥ 0 ≥ λ2 such that λ1(b− a)+λ2(d− c)= 0. Note that
the function h takes at most two values that are different from zero, and is decreasing on
[a�b] ∪ [c�d]. Moreover,

∫ 1
0 h(t)dt = 0.

This result also yields a simple intuition for the Fan–Lorentz theorem in the case
where K is differentiable. Consider a monotonic f and note that, for any direction h,
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decreasing rearrangement. This replaces the symmetry in the discrete formulation.
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the Gâteaux-derivative of the functional V (f ) = ∫ 1
0 K(f(t)� t)dt is given by

δV (f�h) = d

dε

∫ 1

0
K

(
f (t)+ εh(t)� t

)
dt

∣∣∣∣
ε=0

=
∫ 1

0
Kf

(
f (t)� t

)
h(t)dt�

where the last equality follows by interchanging the order of differentiation and integra-
tion.2 The Fan–Lorentz conditions imply together that

dKf

dt
= ft ·Kff +Kft ≥ 0�

For a direction h such that
∫ 1

0 h(t)dt = 0, and such that h is a decreasing two-step function
as defined above, we obtain that

δV (f�h) =
∫ 1

0
Kf

(
f (t)� t

)
h(t)dt ≤ 0�

Hence, the Fan–Lorentz functional V (f ) = ∫ 1
0 K(f(t)� t)dt is Schur-concave by the result

of Chan, Proschan, and Sethuraman (1987).

S.2. Decision-Making Under Uncertainty

We briefly illustrate here how our insights can be applied in order to understand how
agents with non-expected utility preferences choose among risky prospects.

S.2.1. Rank-Dependent Utility and Choquet Capacities

Quiggin (1982) and Yaari (1987) axiomatically derived utility functionals with rank-
dependent assessments of probabilities of the form3

U(F) =
∫ 1

0
v(t)d(g ◦ F)(t)�

where F is the distribution of a random variable on the interval [0�1], v : [0�1] → R is
continuous, strictly increasing, and bounded, and where g : [0�1] → [0�1] is strictly in-
creasing, continuous, and onto. The function v represents a transformation of monetary
payoffs, while the function g represents a transformation of probabilities.4

The case g(x) = x yields the classical von Neumann–Morgenstern expected utility
model where risk aversion is equivalent to v being concave. The case v(x) = x yields
Yaari’s (1987) dual utility theory, where risk aversion is equivalent to g being concave.
Because of the possible interactions between v and g, it is not clear what properties yield
risk aversion in the general rank-dependent model. Using integration by parts, we can

2This is allowed since K is convex in f .
3Their theory is a bit more general (e.g., it allows a more general domain for the functions v and F). We

keep here a framework that is compatible with the rest of the paper.
4For the sake of brevity, we assume below that both g and v are twice differentiable. Since the Fan–Lorentz

result does not require differentiability, the observations below generalize.
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also write

U(F) =
∫ 1

0
v(t)d(g ◦ F)(t)= v(1)−

∫ 1

0
v′(t)(g ◦ F)(t)dt

= v(1)+
∫ 1

0
K

(
F(t)� t

)
dt�

where

K(F� t)= −v′(t)(g ◦ F)�
and where we used g(0)= 0 and g(1)= 1. Then

∂2K(F� t)

∂F∂t
= −g′(F(t))v′′(t)≥ 0

for all t if and only if v is concave. Similarly,

∂2K(F� t)

∂2F
= −g′′(F(t))v′(t)≥ 0

for all t if and only if g is concave.
Hence, the Fan–Lorentz conditions are satisfied if and only if v′′ ≤ 0 and g′′ ≤ 0. As a

consequence, the utility functional U = ∫ 1
0 v(t)d(g◦F)(t) is Schur-concave, and the agent

whose preferences are represented by U is risk averse, exactly as under standard expected
utility.5

Another important strand of the literature on non-expected utility considers ambiguity
aversion. The main tool is the Choquet integral with respect to a (convex) capacity (this
is unrelated to the Choquet representation used above!). Analogously to the derivations
above, it can be shown that the Choquet integral yields a Schur-concave functional if and
only if it is computed with respect to a convex capacity.

S.2.2. A Portfolio Choice Problem

Dybvig (1988) studied a simplified version of the following problem:

min
X

E[XY ]
s.t. X ≥cv Z�

where Y and Z are given random variables. Y represents here the distribution of a pricing
function over the states of the world, and the goal is to choose, given Y , the cheapest
contingent claim X that is less risky than a given claim Z. To make the problem well-
defined, Y needs to be essentially bounded and X , Z must be integrable. Recalling that

X ≥cv Z ⇔ FX � FZ ⇔ F−1
X ≺ F−1

Z �

5The equivalence between the concavity of the functions v and g and risk aversion has been pointed out by
Hong, Karni, and Safra (1987), who built on Machina (1982).
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we obtain that

E[XY ] ≥
∫ 1

0
F−1
Y (1 − t)F−1

X (t)dt ≥
∫ 1

0
F−1
Y (1 − t)F−1

Z (t)dt�

where the first inequality follows by the rearrangement inequality of Hardy, Littlewood,
and Polya (1929) (the anti-assortative part!), and where the second inequality follows by
the Fan–Lorentz theorem.

By choosing a random variable X that has the same distribution as Z and that is anti-
comonotonic with Y ,6 the lower bound

∫ 1
0 F−1

Y (1 − t)F−1
Z (t)dt is attained, and hence such

a choice solves the portfolio choice problem.7
If Y ′ ≤cv Y , we obtain by the Fan–Lorentz inequality (now applied to the functional

with argument F−1
Y ) that

sup
X�cvZ

E[XY ] =
∫ 1

0
F−1
Y (1 − t)F−1

Z (t)dt ≥
∫ 1

0
F−1
Y ′ (1 − t)F−1

Z (t)dt = sup
X�cvZ

E
[
XY ′]�

In other words, a decision maker that becomes more informed (in the Blackwell sense)
will bear a lower cost.
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6This can always be done if the underlying probability space is non-atomic. A random vector (X�Y) is anti-
comonotonic if there exists a random variable W and non-decreasing functions h1, h2 such that (X�Y) =dist

(h1(W )�−h2(W )).
7For more details on this problem, see Dana (2005) and the literature cited there. It does not use the Fan–

Lorentz inequality.
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