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Delegation in Veto Bargaining†

By Navin Kartik, Andreas Kleiner, and Richard Van Weelden*

A proposer requires a veto player’s approval to change a status 
quo. Proposer is uncertain about Vetoer’s preferences. We show that 
Vetoer is typically given a non-singleton menu, or delegation set, of 
options to pick from. The optimal set balances the extent of compro-
mise with the risk of a veto. We identify conditions for certain dele-
gation sets to emerge, including “full delegation”: Vetoer can choose 
any action between the status quo and Proposer’s ideal action. By 
contrast to expertise-based delegation, Proposer gives less discre-
tion to Vetoer when their preferences are more (likely to be) aligned. 
(JEL D72, D82)

Motivation.—There are numerous situations in which one agent or group can 
make proposals but another must approve them. Legislatures (e.g., the US Congress) 
send bills to executives (e.g., the president), who can veto them. Governmental leg-
islation can be struck down as unconstitutional by the judiciary. Prosecutors choose 
which charges to bring against defendants, but judges and juries decide whether to 
convict. A real estate agent can recommend a house to his client, but the client must 
decide to put in an offer; similarly, a search committee can put forward a candidate, 
but the organization decides whether to hire her.

Romer and Rosenthal (1978) present a seminal analysis of such veto bargaining. 
Their framework is one of complete information in which a proposer (Congress, 
government, prosecutor, salesperson, search committee) makes a take-it-or-leave-it 
proposal to a veto player (president, judiciary, judge/jury, customer, organization). 
Preferences are single peaked. That is, rather than “dividing a dollar,” the negotiat-
ing parties share some preference alignment. Such preferences are plausible in the 
contexts mentioned above.

Our paper studies veto bargaining with incomplete information. The proposer 
is uncertain about the veto player’s preferences: specifically, which propos-
als would actually get vetoed. Previous scholars have emphasized this feature’s  
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importance; see Cameron and McCarty’s (2004) survey. But to our knowledge, our 
paper is the first that takes a general approach to the issue. We do not assume the 
proposer is restricted to making a single proposal (e.g., Romer and Rosenthal 1979), 
nor do we fix any particular negotiating protocol (e.g., one round of cheap talk in 
Matthews 1989, Forges and Renault 2021). Instead, we consider the possible out-
comes across all possible protocols by taking a mechanism design approach. Our 
focus is on identifying the proposer’s optimum.

There are at least two reasons this mechanism design approach is of interest. 
First, it identifies an upper bound on the proposer’s welfare. Second, as is stan-
dard in settings without transfers, any (deterministic) mechanism is readily inter-
preted and implemented as delegation. That is, the proposer simply offers a menu of 
options; the veto player can select any one or reject them all. Menus or delegation 
sets are observed in practice in some applications of our model. Salespeople show 
customers subsets of products, and search committees put forward multiple candi-
dates for their organization to choose among. In politics, a bill authorizing at most  
$​x​ of spending effectively offers an executive who controls the implementing 
bureaucracy the choice of any spending level in the interval ​​[0, x]​​. Bills can also 
grant more or less discretion of how to allocate a given level of spending, as encap-
sulated by former Senator Russ Feingold in the context of the first US coronavirus 
stimulus package: “Congress has to decide how much discretion it wants to delegate 
to executive branch officials.”1

Main Results.—We formally study a one-dimensional environment. There is a 
status quo policy or action, ​0​, that obtains if there is a veto. There are two agents. 
Proposer’s ideal action is ​1​. Vetoer’s ideal action, ​v​, is her private information. We 
assume Vetoer preferences are represented by a quadratic loss function, but allow 
Proposer to have any concave utility function.2

Our first result (Proposition 1) identifies conditions under which it is optimal 
for Proposer to fully compromise and simply let Vetoer choose her preferred action 
in the interval ​​[0, 1]​​. We call this full delegation, because Proposer only excludes 
options that are, from his point of view, dominated by simply offering his ideal 
action ​1​ no matter Vetoer’s ideal point. Intuitively, full delegation is optimal when 
the specter of a veto looms large; in particular, it is sufficient that the density of 
Vetoer’s ideal point is decreasing on the unit interval. Optimality of full delegation 
is quite striking: despite Proposer having considerable bargaining and commitment 
power, it is Vetoer who frequently gets her first best. This is a telling manifestation 
of private information’s consequences. Since full delegation implies ex post Pareto 
efficiency, large information rents can obtain here without generating inefficiency, 
unlike in most other settings.

The opposite of full delegation is no compromise: Proposer only offers 
his ideal action, ​1​. Of course, Vetoer can veto and choose the status quo ​0​. 
Proposition 2 gives conditions for optimality of no compromise. It is sufficient, 

1 Jeff Stein. “Treasury’s power over $500 billion loan program becomes key sticking point in coronavirus aid 
bill.” Washington Post, March 22, 2020. https://wapo.st/2XLgljY

2 Proposer’s risk attitude is important because he faces uncertainty about the final action. Among deterministic 
mechanisms, Vetoer’s risk attitude is irrelevant, so quadratic loss entails no restriction beyond symmetry around 
the ideal point.

https://wapo.st/2XLgljY
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for example, that Proposer has a linear loss function—so, in the relevant region of  
actions, ​​[0, 1]​​, he only cares about the mean action—and the density of Vetoer’s ideal 
point is increasing in this region. This case juxtaposes nicely against the aforemen-
tioned decreasing-density condition for full delegation.

Both full delegation and no compromise are boundary cases of interval  
delegation: Proposer offers a menu of the form ​​[c, 1]​​. Interval delegation is inter-
esting for multiple reasons. Among them are that such delegation sets are simple to 
interpret and implement, and they turn out to be tractable for comparative statics. 
Proposition 3 provides conditions under which interval delegation is optimal. These 
are met, in particular, when Proposer has a linear or quadratic loss function and 
Vetoer’s ideal point distribution is log-concave (Corollary 3).

We show that, under reasonable conditions, optimal interval delegation yields a 
Pareto improvement over singleton proposals, even when cheap talk is allowed and 
full delegation is not optimal (Proposition 5). We trace the intuition to Proposer 
being more willing to compromise when he can offer Vetoer an interval of options 
rather than only singletons.

We develop two comparative statics, restricting attention to interval delegation—
either justified by optimality or otherwise. First, what happens when Proposer 
becomes more risk averse? Proposition 4(i) establishes that Vetoer is given more 
discretion: the optimal threshold in the interval delegation set (i.e., that denoted ​c​ 
above) decreases. Intuitively, Proposer offers a larger set of options to mitigate the 
risk of a veto. Second, what about when Vetoer becomes more ex ante aligned with 
Proposer? Formally, we consider right shifts in Vetoer’s ideal point distribution, in 
the sense of likelihood ratio dominance. Proposition 4(ii) establishes that discre-
tion decreases: the optimal interval delegation threshold increases. Intuitively, this 
is because Proposer is less concerned that a veto will occur. Although these compar-
ative statics appear natural, it is the structure of interval delegation that allows us to 
establish them.

Contrast with Expertise-based Delegation.—The second comparative static men-
tioned above contrasts with a key theme of the expertise-based delegation literature 
following Holmström (1977, 1984). In that literature, an agent is given discretion 
over actions because her private information is valuable to the principal; the princi-
pal limits the degree of discretion because of preference misalignment. One version 
of the so-called ally principle says that a more aligned agent receives more discre-
tion. Holmström (1984) establishes its validity under reasonably general conditions, 
so long as delegation sets take the form of intervals.3 In our setting, the reason 
Proposer gives Vetoer discretion is fundamentally different from that in Holmström: 
it is not to benefit from Vetoer’s expertise; rather, Proposer trades off the risk of a 
veto with the extent of compromise. (In jargon, our delegator has state-independent 
preferences, by contrast to the state-dependent preferences in most of the literature 
following Holmström.) Hence we find less discretion emerging when there is, in a 
suitable sense, more ex ante preference alignment.

3 The comparative static may fail absent interval delegation (e.g., Alonso and Matouschek 2008).
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Applications.—In Section IV we present three applications: product menus 
offered to a consumer; the legal doctrine of lesser-included offenses; and legislative 
bills put forward to an executive. These applications illustrate the relevance of our 
general results and allow us to discuss additional implications. For example, we 
comment on voluntary disclosure of information by consumers to sellers; welfare 
consequences of the lesser-included offenses doctrine; and alternative interpreta-
tions of how discretion can be granted in the legislative application.

Methodology.—We hope some readers will find our analysis interesting on a meth-
odological level. While it is convenient and economically insightful to describe our 
substantive results in terms of optimal delegation sets, the formal problem we study 
is one of mechanism design without transfers. Our analytical methodology builds 
on the infinite-dimensional Lagrangian approach advanced by Amador, Werning 
and Angeletos (2006) and Amador and Bagwell (2013). Unlike these authors and 
many others, including the important contributions by Melumad and Shibano 
(1991) and Alonso and Matouschek (2008), we also cover stochastic mechanisms.4 
That is, we allow for mechanisms in which Vetoer may choose among lotteries over 
actions. We view such mechanisms as not only theoretically important, but also 
relevant in applications. For instance, consider a president (Proposer) nominating a 
judge for confirmation from the Senate (Vetoer) to a lifetime appointment. Both the 
president and the (pivotal voter in the) Senate have preferences over the ideology of 
the appointed judge. While some potential nominees have extensive written records 
or well-identified ideologies, others have less of a record of their own legal opinions 
and thus could be viewed as a lottery over ideologies.5

Stochastic mechanisms can sometimes be optimal in our framework. Nevertheless, 
we establish that our sufficient conditions for full delegation, no compromise, and 
interval delegation (Propositions 1, 2, and 3) ensure optimality of these (determin-
istic) mechanisms even among stochastic mechanisms. Furthermore, by permitting 
stochastic mechanisms, our sufficient conditions are shown to also be necessary 
for a class of Proposer’s utility functions that include linear and quadratic loss. Our 
approach to handling stochastic mechanisms should be useful in other delegation 
problems.

Recently, Kolotilin and Zapechelnyuk (2019) have introduced balanced dele-
gation problems, which are delegation problems in which certain extreme actions 
or outside options must be included. Our setting fits into their general framework, 
as one can assume the status quo must be part of the delegation set. Kolotilin 
and Zapechelnyuk (2019) derive a general equivalence between such problems and 
monotone Bayesian persuasion problems. More concretely, they show how some 
results from the latter literature (e.g., Kolotilin 2018, Dworczak and Martini 2019) 

4 A qualification is appropriate: both Amador, Werning, and Angeletos (2006) and Amador and Bagwell (2013) 
allow for money burning, identifying conditions under which optimal mechanisms do not employ that instrument; 
see Amador, Bagwell, and Frankel (2018) as well. Stochastic mechanisms are equivalent to money burning for 
certain preference specifications, but in general they are not equivalent. Ambrus and Egorov (2017) discuss settings 
in which money burning can be optimal.

5 For example, while John Roberts had argued several cases before the US Supreme Court, he had served only 
two years as a judge prior to his nomination to the court by President George W. Bush in 2005; in 2020, Vice 
President Mike Pence complained that “John Roberts has been a disappointment to conservatives” (https://wapo.
st/3jFlLoo)

https://wapo.st/3jFlLoo
https://wapo.st/3jFlLoo


4050 THE AMERICAN ECONOMIC REVIEW DECEMBER 2021

can be brought to bear on “linear” balanced delegation problems.6 Our approach of 
directly studying the delegation problem is complementary and has some advan-
tages. First, it permits insights absent said linearity: this is most evident in our full 
delegation result. Second, we believe it provides some more transparent economic 
intuitions. Third, unlike Kolotilin and Zapechelnyuk (2019), we can address sto-
chastic mechanisms and necessity of our sufficient conditions. At a broader level, 
note that by contrast to us, Kolotilin and Zapechelnyuk (2019) highlight applications 
concerning expertise-based delegation (i.e., with state-dependent delegator prefer-
ences). Zapechelnyuk (2019) applies their methodology to a quality certification 
problem that, he shows, maps into a delegation problem in which the delegator’s 
preferences are state independent.

Like us, Saran (2020) and Amador and Bagwell (2021) directly analyze dele-
gation problems with an outside option. Iterations of both papers have developed 
concurrently with ours. Both papers study frameworks that are more general than 
ours insofar as they allow for state-dependent delegator preferences. Our approach 
to finding conditions for the optimality of delegation sets differs from theirs. This is 
most evident in that neither Saran (2020) nor Amador and Bagwell (2021) consider 
stochastic mechanisms or necessity of their sufficient conditions. Our approach also 
allows us to deduce more permissive sufficient conditions for our delegation sets 
than their results would when specialized to state-independent delegator prefer-
ences.7 Furthermore, our comparative statics and comparisons with cheap talk are 
distinct.

Outline.—The rest of the paper proceeds as follows. Section I presents our model. 
Section II contains our main results on the conditions for optimality of full delega-
tion, no compromise, and, more broadly, interval delegation. Section III develops 
comparative statics and makes comparisons with other mechanisms. Section IV 
contains our applications. Section V concludes. All proofs are in the Appendices.

6 This linearity requires that the utilities of Proposer and (all types of) Vetoer, viewed as a function of the action, 
have the same curvature.

7 With regards to Saran (2020): his Section V considers state-independent preferences, specifically the ana-
log of our linear loss Proposer utility. Our sufficiency condition for full delegation (Proposition 1) subsumes his 
on the agent-optimal mechanism, while our condition for interval delegation (Proposition  3) subsumes his on 
take-it-or-leave-it and minimal-acceptable-action mechanisms. (His take-it-or-leave-it mechanism is actually 
our interval delegation rather than our no compromise because we make different assumptions on the support of 
Vetoer’s ideal-point distribution.) On the other hand, he presents examples in which there are mechanisms that out-
perform these; see his Figures 6 and 7. With regards to Amador and Bagwell (2021), their cap allocation with poten-
tial exclusion corresponds to our interval delegation. In our framework, using their approach (see their Section IV) 
would correspond to finding sufficient conditions that ensure that given an arbitrary interval threshold—including 
any suboptimal one—it would be constrained optimal for Proposer to not further restrict Vetoer’s action within the 
given interval. They show in their Section V that this approach is fruitful for their monopoly regulation problem 
with state-dependent regulator preferences. But in a setting with state-independent Proposer preferences like ours, it 
would imply strong restrictions that rule out many cases we cover. For example, with linear loss Proposer utility, it 
would imply that our type density must be decreasing on ​​[0, 1]​​, so that only full delegation could emerge as optimal.
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I.  Model

A. Veto Bargaining with Incomplete Information

We consider a classic bargaining problem between two players, a proposer (he) 
and a veto player (she), who jointly determine a policy outcome or action ​a  ∈  ℝ​ . In 
a manner elaborated below, Proposer makes a proposal that Vetoer can either accept 
or reject. If Vetoer rejects, a status-quo action is preserved; we normalize the status 
quo to ​0​.

We assume both players have single-peaked utilities. Proposer’s utility is ​u​(a)​​ 
that is concave, maximized uniquely at ​a  =  1​ (essentially a normalization), and 
twice differentiable at all ​a  ≠  1​.8 Unless indicated explicitly, we use “concave,” 
“increasing,” “negative,” etc., to mean “weakly concave,” “weakly increasing,” 
“weakly negative,” etc. We will sometimes invoke a restriction to the following sub-
class of Proposer preferences, which stipulates a convex combination of the widely 
used linear and quadratic loss functions.

CONDITION LQ: For some ​γ  ∈  ​[0, 1]​​,

	​ u​(a)​  =  − ​(1 − γ)​|1 − a| − γ ​​(1 − a)​​​ 2​.​

Vetoer’s utility is represented by ​− l​(|v − a|)​​, where ​l​( · )​​ is strictly increasing. So 
her utility is symmetric around the unique ideal point ​v​. For tractability, we assume ​
l​(|v − a|)​  =  ​​(v − a)​​​ 2​​. A subset of our results will rely only on Vetoer’s ordinal 
preferences, for which the choice of quadratic loss entails no loss of generality given 
that Vetoer’s utility is symmetric around her ideal point. Specifically, Vetoer’s ordi-
nal preferences are sufficient when we consider only deterministic mechanisms.

A key ingredient of our model is that ​v​ is Vetoer’s private information. We 
accordingly refer to ​v​ as Vetoer’s type. It is drawn from a cumulative distribution ​
F​ whose support is an interval ​​[​ v _ ​, ​v –​]​​, where we permit ​​ v _ ​  =  − ∞​ and/or ​​v –​  =  ∞​.  
We assume ​F​ admits a continuously differentiable density ​f​, and that ​f ​( · )​  >  0​ on ​​
[0, 1]​​. All aspects of the environment except the type ​v​ are common knowledge.  
If ​v​ were common knowledge, this model would reduce to that of Romer 
and Rosenthal (1978).

Naturally, it is in Proposer’s interests to elicit information from Vetoer about ​v​.  
For example, they might engage in cheap talk communication (Matthews 1989), 
possibly over multiple rounds, or Proposer might make sequential proposals, and 
so on. To circumvent issues about exactly how the bargaining ensues, we take a 
mechanism design approach. Following the revelation principle, we consider direct 
revelation mechanisms, hereafter simply mechanisms.

A deterministic mechanism is described by a real-valued function ​α​(v)​​, which 
specifies the action when Vetoer’s type is ​v​, and must satisfy the usual incentive 
compatibility (IC) and individual rationality (IR) conditions. IC requires that each 
type ​v​ prefers ​α​(v)​​ to ​α​(v′)​​ for any ​v′  ≠  v​; IR requires that each type ​v​ prefers  

8 Permitting a point of nondifferentiability allows the linear loss function ​u​(a)​  =  − |1 − a|​. When we write  
​u′​(1)​​ subsequently, it refers to the left derivative when ​u​ is not differentiable at 1.
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​α​(v)​​ to the status quo ​0​. Notice that any deterministic mechanism is equivalent to the 
Proposer offering a (closed) menu or delegation set ​A  ⊆  ℝ​, and Vetoer choosing 
an action from ​A ∪ ​{0}​​. We will also consider the more general class of stochastic 
mechanisms, which specify probability distributions over actions for each Vetoer 
type, with analogous IC and IR constraints to those aforementioned. Stochastic 
mechanisms are theoretically important because the revelation principle does not 
justify focusing only on deterministic mechanisms. As noted in the introduction, 
they may also be relevant for applications. A notable contribution of this paper is to 
establish conditions under which, despite the absence of transfers, stochastic mech-
anisms cannot improve upon deterministic ones.9

The mechanism design approach we take can be viewed as identifying an upper 
bound on Proposer’s welfare. That said, as also mentioned in the introduction, we 
find the implementation via delegation sets quite realistic in various contexts.

B. Proposer’s Problem

We now formally define Proposer’s problem. Let ​M​(ℝ)​​ denote the set of Borel 
probability distributions on ​ℝ​,10 and ​​M ​0​​​(ℝ)​​ be the subset of distributions with finite 
expectation and finite variance. Denote by ​​δ​a​​​ the degenerate distribution that puts 
probability one on action ​a​. A stochastic mechanism—or simply a mechanism with-
out qualification—is a measurable function ​m : ​[​ v _ ​, ​v –​]​  →  ​M ​0​​​(ℝ)​​, with ​m​(v)​​ being the 
probability distribution over actions for type ​v​.11 To reduce notation, for any deter-
ministic mechanism ​α : ​[​ v _ ​, ​v –​]​  →  ℝ​, we also denote the mechanism ​v  ↦  ​δ​α​(v)​​​​ by ​
α​. For any integrable function ​g : A  →  ℝ​, let ​​E​ m​(v)​​​​[g​(a)​]​​ denote the expectation 
of ​g​(a)​​ when ​a​ has distribution ​m​(v)​​. We only consider mechanisms ​m​ for which  
​v  ↦  ​E​ m​(v)​​​​[a]​​ is integrable. Define the subset of mechanisms

	​   ≔ ​ {m : ​[​ v 
¯
 ​, ​   v ​]​  →  ​M​ 0​​​(ℝ)​ | m​(0)​  =  ​δ​0​​  and  ∀ v  <  v′ : ​E​ m​(v)​​​​[ a ]​  ≤ ​ E​ m​(v′)​​​​[ a ]​}​.​

That is, ​​ consists of mechanisms in which type ​0​ gets the status quo and a higher 
type receives a higher expected action. The first requirement is implied by IR, since 
Vetoer can always choose the status quo. The second is implied by IC, since Vetoer’s 
utility ​− ​​(v − a)​​​ 2​​ is equivalently represented by ​av − ​a​​ 2​ / 2​; single-crossing differ-
ence in ​​(a, v)​​ yields monotonicity of ​​E​ m​(v)​​​​[ a ]​​ in ​v​ from standard arguments (elabo-
rated in fn. 11 below).

Proposer’s problem is

(P)	​​ max​ 
m∈

​ ​ ∫ ​E​ m​(v)​​​​[u​(a)​]​ dF​(v)​​,

9 Remark 1 below explains why stochastic mechanisms can be optimal; Example E.1 in online Appendix E elab-
orates. Alonso and Matouschek (2008, p. 281) provide a related example in their framework without a veto option; 
see also Kováč and Mylovanov (2009, Section 4).

10 We endow ​M​(ℝ)​​ with the topology of weak convergence and the corresponding Borel ​σ​-algebra.
11 There is no loss in restricting attention to ​​M ​0​​​(ℝ)​​ instead of ​M​(ℝ)​​ because no type would choose a lottery with 

infinite mean or variance, given that the status quo is available.
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​subject to​

(IC-env)	​ ​E​ m​(v)​​​​[av − ​a​​ 2​ / 2]​  =  ​∫ 
0
​ 
v
​​​E​ m​(s)​​​​[ a ]​ ds    ∀ v  ∈ ​ [​ v _ ​, ​v –​]​.​

As noted above, it is without loss to restrict attention to mechanisms in ​​. The 
constraint (IC-env) captures the additional content of IC, beyond monotonicity, via 
an analog of the standard envelope formula.12 Note that since IC requires that no 
type prefer type ​0​’s lottery over its own, and type ​0​’s IR constraint requires that it 
receive action ​0​ (captured in ​​), every type’s IR constraint is implied by type ​0​’s. An 
optimal mechanism is a solution to problem (P).

If we restricted attention to deterministic mechanisms, the analogous problem for 
Proposer would be

(D)	​​ max​ 
α∈

​ ​ ∫ u​(α​(v)​)​ dF​(v)​​,

​subject to​

	​ vα​(v)​ − α ​​(v)​​​ 2​ / 2  =  ​∫ 
0
​ 
v
​​α​(s)​ ds,​

where

	​   ≔ ​ {α : ​[​ v _ ​, ​v –​]​  →  ℝ | α​(0)​  =  0 and α is increasing}​.​

Any deterministic mechanism ​α​ that is IC has a corresponding (closed) delega-
tion set ​​A​ α​​  ≔  ​⋃ v​​ α​(v)​​​. Conversely, any delegation set ​A​ has a corresponding deter-
ministic mechanism ​​α​A​​​ where ​​α​A​​​(v)​​ is the action in ​A ∪ ​{0}​​ that type ​v​ prefers the 
most (with ties broken in favor of Proposer). Note that ​​α​A​​​ satisfies IC and IR. While 
our formal analysis works with mechanisms, it is easier and more economically 
intuitive to describe our main results, which concern certain deterministic mecha-
nisms, using delegation sets.

We emphasize some terminology: an optimal deterministic mechanism (or an 
optimal delegation set) is a solution to problem (D). But when we say that a deter-
ministic mechanism (or delegation set) is optimal, we mean that it solves problem 
(P), i.e., no stochastic mechanism can strictly improve on it.

12 Formally, using quadratic utility, IC requires ​∀ v, v′​, ​​E​ m​(v)​​​​[av  −  ​a​​ 2​ / 2]​  ≥  ​E​ m​(v′)​​​​[av  −  ​a​​ 2​ / 2]​​, and IR 
requires ​∀ v​, ​​E​ m​(v)​​​​[av − ​a​​ 2​ / 2]​  ≥  0​. An IC mechanism ​m​ thus satisfies IR if and only if ​m​(0)​  =  ​δ​0​​​. It follows 
that ​m​ satisfies IC and IR if and only if ​m  ∈  ​ and the envelope formula (IC-env) holds. To confirm this, let  
​V​(v)​  ≔  ​E​ m​(v)​​​​[av − ​a​​ 2​ / 2]​​. Mechanism ​m​ is IC if and only if ​V​(v)​  =  ​max​v′​​ ​E​ m​(v′)​​​​[av − ​a​​ 2​ / 2]​​, which holds if and 
only if ​V​ is convex and ​V​(v)​  =  V​(0)​ + ​∫ 0​ 

v​​​E​ m​(s)​​​​[ a ]​ds​ (Milgrom and Segal 2002, Theorem 2). Consequently, ​m​ is 
IC and IR if and only if ​​E​ m​(v)​​​​[ a ]​​ is increasing in ​v​, (IC-env) holds, and ​m​(0)​  =  ​δ​0​​​. A technical note: Milgrom 
and Segal’s (2002) result applies even when our type space is unbounded because we can effectively restrict atten-
tion to types in ​​[0, 1]​​ when solving for optimal mechanisms, as elaborated at the outset of Appendix A; moreover, 
in any IC and IR mechanism, ​​E​ m​(v)​​​​[ a ]​​ will lie in ​​[ 0, 2 ]​​ for all ​v  ∈  ​[0, 1]​​. Therefore, the derivative of Vetoer’s utility 
with respect to her type is bounded in any IC and IR mechanism.
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C. Discussion

Let us comment on four aspects of our model.
First, veto power is captured via a standard interim IR constraint. An alterna-

tive, as in Compte and Jehiel (2009), would be to allow Vetoer to exercise her veto 
even after the mechanism determines an action. This is stronger than just ex post 
IR because it also strengthens the IC constraint: when type ​v​ mimics type ​v′​, ​v​ may 
veto a different set of allocations than ​v′​ would, and so the action distribution that ​v​ 
evaluates the deviation with is not ​m​(v′)​​. Which form of veto power is conceptually 
appropriate depends on the application. But any IC and IR deterministic mechanism 
also satisfies the ex post veto constraint. Hence, the sufficient conditions we provide 
below for optimality of delegation sets would remain sufficient.

Second, our model is one of private values: Vetoer’s type does not affect Proposer’s 
preferences. This is by way of contrast with the delegation literature initiated by 
Holmström (1984), in which a principal gives discretion to an agent because of 
the agent’s expertise, i.e., because they have interdependent preferences. We could 
extend our model and analysis to incorporate this expertise-based delegation or dis-
cretion aspect, but one of our main themes is that discretion will emerge even when 
that is absent, because we instead have veto power.

Third, one might ask why Vetoer relies on Proposer in the first place given private 
values. Why can’t the Vetoer simply choose her ideal point, or require Proposer to 
offer all the options? At a formal level, we simply take the veto bargaining institu-
tion and Proposer’s agenda setting power as given, for reasons outside the model.13 
But it is plausible in many situations that even though Vetoer knows her preferences, 
she nevertheless relies on Proposer to provide the options. In the hiring application 
mentioned earlier, a superior within an organization may well know her preferences, 
but lacks the time or expertise to find candidates herself. She thus relies on the 
search committee. In an application elaborated on in Section IV, a consumer cannot 
pick among products a salesperson chooses not to make available (and the salesper-
son can always claim some products are out of stock). A related point in the legisla-
tive context is that even when Vetoer knows her spatial/ideological preferences, she 
cannot simply implement her preferred policy: implementation must be preceded by 
policy development, which is done by Proposer (cf.  Hirsch and Shotts 2015).

Fourth, while we have assumed that Proposer has an ideal point of ​1​, an equiva-
lent formulation is that Proposer’s utility ​u​( a )​​ is globally increasing but he is con-
strained to only offer actions less than ​1​, or there is simply an upper bound on the 
action space at ​1​.

D. Preliminary Observations

Consider delegation sets. Notice first that there is no loss for Proposer in includ-
ing his ideal action ​1​ in the delegation set: for any Vetoer type ​v​, either it does not 
affect the chosen action, or it results in a preferable action. Next, there is no loss 
for Proposer in excluding actions outside ​​[0, 1]​​: shrinking a delegation set ​A​ that 

13 Mylovanov (2008) provides a rationale for what he calls “veto-based delegation.”
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contains ​1​ to ​A ∩ ​[0, 1]​​ only results in each type choosing an action closer to ​1​. As 
existence of an optimal delegation set follows from standard arguments, we have the 
following result.

LEMMA 1: There is an optimal delegation set ​A​ satisfying ​1  ∈  A  ⊆  ​[0, 1]​​.

It would also be without loss to assume that a delegation set contains the status 
quo, ​0​. We don’t do so, however, because it is convenient to sometimes describe 
optimal delegation sets without including ​0​.

For any ​a  ∈  ​(0, 1)​​, the delegation set ​A  =  ​[a, 1]​​ strictly dominates the sin-
gleton ​​{a}​​ because ​A​ results in preferable actions for Proposer when ​v  >  a​.  
This simple observation highlights the significance of giving Vetoer discretion, 
despite our model shutting down the expertise-based rationale that the literature 
initiated by Holmström (1984) has focused on.

While Proposer always wants to include action ​1​ in the delegation set, he faces a 
trade-off when including any action ​a  ∈  ​(0, 1)​​. Allowing Vetoer to choose such an 
action ​a​ reduces the probability of a veto (or any action less than ​a​) but also reduces 
the probability that Vetoer chooses an action even higher than ​a​, which Proposer 
would prefer to ​a​.

II.  Delegation and Optimal Mechanisms

A. Full Delegation

In light of Lemma 1, we refer to the delegation set ​​[0, 1]​​ as full delegation. Note 
that full delegation does impose some constraints on Vetoer. But the constraints are 
minimal: only actions outside the convex hull of the status quo and Proposer’s ideal 
point are excluded. Given the veto-bargaining institution, an outcome of full delega-
tion starkly captures how Vetoer’s private information can corrode Proposer’s bar-
gaining or agenda-setting power. All Vetoer types in ​​[0, 1]​​ obtain their ideal action; 
no matter Vetoer’s type, there is (ex post) Pareto efficiency, unlike in most other 
settings that confer information rents. Full delegation thus contrasts sharply with the 
outcome under complete information (Romer and Rosenthal 1978), in which case 
Proposer would make Vetoer with ideal point ​v  <  1 / 2​ indifferent with exercising 
the veto while getting his own ideal action ​1​ from types ​v  ≥  1 / 2​. It also contrasts 
with the outcome under incomplete information were Proposer restricted to making 
a singleton proposal. In that case the proposal would lead to a veto by some subin-
terval of types ​v  ∈  ​[0, 1]​​, hence to ex post Pareto inefficiency, and all Vetoer types 
would be weakly worse off, many strictly.14

It is thus of interest to know when full delegation is optimal. The following 
quantity concerning the concavity of Proposer’s utility will play a key role in our 
analysis:

	​ κ  ≔ ​   inf​ 
a∈​[0,1)​

​​−u″​(a)​.​

14 Action ​0​, which can be viewed as a veto, also has positive probability under full delegation when ​​ v _ ​  <  0​.
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Under Condition LQ, ​κ  =  2γ​, which is larger when Proposer’s utility puts more 
weight on its quadratic component relative to its linear component.

PROPOSITION 1 (Full Delegation): Full delegation is optimal if

(1)	​ κF​(v)​ − u′​(v)​ f ​(v)​ is increasing on ​[0, 1]​.​

Conversely, under Condition LQ, full delegation is optimal only if (1) holds.

Since ​κ  ≥  0​, ​F​( · )​​ is increasing, and ​u′​( · )​​ is decreasing and nonnegative on ​​[0, 1]​​, 
the proposition directly implies the following result.

COROLLARY 1: Full delegation is optimal if the type density is decreasing on  
​​[0, 1]​​.

In particular, it is sufficient for full delegation that the type distribution is uni-
modal with a negative mode. To obtain intuition for the corollary, consider remov-
ing any interval ​​(​ a _ ​, ​a –​)​​ from a delegation set ​A​ that contains ​​[​ a _ ​, ​a –​]​​. This change 
induces Vetoer with type ​v  ∈ ​ (​ a _ ​, ​a –​)​​ to choose between ​​ a _ ​​ and ​​a –​​. Due to her sym-
metric utility function, Vetoer will choose ​​ a _ ​​ when ​v  ∈ ​ (​ a _ ​, (​ a _ ​ + ​a –​)/2)​​, which 
harms Proposer, while Vetoer will choose ​​   a ​​ when ​v  ∈ ​ ((​ a _ ​ + ​a –​)/2, ​a –​)​​, which ben-
efits Proposer. When the type density is decreasing on ​​[​ a _ ​, ​a –​]​​, the former possibil-
ity is more likely. In fact, the pruned delegation set induces an action distribution 
that is second-order stochastically dominated if the type density is decreasing on  
​​[​ a _ ​, ​a –​]​​.15 Since Proposer’s utility is concave, he prefers the original delegation set ​A​. 
As any (closed) delegation set contained in ​​[0, 1]​​ can be obtained by successively 
removing open intervals from ​​[0, 1]​​, full delegation is an optimal delegation set. 
While this explanation applies only among delegation sets, Proposition 1 implies 
that Corollary 1 holds even allowing for stochastic mechanisms.

Removing an interval increases the expected action when the type density 
is increasing, but it also increases the probability of a lower action. Thus, when 
Proposer is risk averse, it can be optimal to not remove an interval even if the den-
sity is increasing on that interval. This explains why condition (1) is weaker than ​f​ 
decreasing on ​​[0, 1]​​. In general, removing an interval is optimal only if the density is 
increasing quickly relative to Proposer’s risk aversion. This suggests that full dele-
gation is optimal whenever Proposer is sufficiently risk averse. Proposition 1 allows 

15 Let ​​G​ X​​​ denote the cumulative distribution of the action induced by ​A​, ​​G​ Y​​​ denote that induced by  
​A \ ​(​ a _ ​, ​a –​)​​, and let ​​a​ mid​​  ≔  ​(​ a _ ​ + ​a –​)​ / 2​. Since ​F​ is the distribution of ​v​, it holds that ​​G​ X​​​(a)​  =  ​G​ Y​​​(a)​​ for ​a  ∉  ​(​ a _ ​, ​a –​]​​, 
​​G​ X​​​(a)​  =  F​(a)​​ on ​​[​ a _ ​, ​a –​]​​, and ​​G​ Y​​​(a)​  =  F​(​a​ mid​​)​​ for ​a  ∈  ​[​ a _ ​, ​a –​)​​. Consequently, for any ​a  ∈  ​[​ a _ ​, ​a​ mid​​]​​, ​​G​ Y​​​(a)​  ≥  
​G​ X​​​(a)​​ and ​​∫ 0​ 

a​​​[​G​ Y​​​(t)​ − ​G​ X​​​(t)​]​ dt  ≥  0​. Furthermore, for ​a  ∈  ​(​a​ mid​​, ​a –​]​​, 

	​​ ∫ 
a
​ 
0
​​ ​[​G​ Y​​​(t)​ − ​G​ X​​​(t)​]​dt  = ​ ∫ 

​ a _ ​
​ 

a
​​ ​[F​(​a​ mid​​)​ − F​(t)​]​ dt  ≥ ​ ∫ 

​ a _ ​
​ 

​a –​
​​​[F​(​a​ mid​​)​ − F​(t)​]​ dt  ≥  0​,

where the last inequality follows from Jensen’s inequality because ​F​ is concave on ​​[​ a ¯ ​, ​   a ​]​​. We conclude that ​​G​ X​​​ 
second-order stochastically dominates ​​G​ Y​​​. 

If the type density is not decreasing on ​​[​ a _ ​, ​a –​]​​, then second-order stochastic dominance need not hold, but 
Proposer is hurt by pruning ​​(​ a _ ​, ​a –​)​​ if condition (1)’s expression ​κF​(v)​ − u′​(v)​ f ​(v)​​ is increasing on ​​[​ a _ ​, ​a –​]​​.
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us to formalize the point using the Arrow-Prat (Arrow 1965, Pratt 1964) coefficient 
of absolute risk aversion.

COROLLARY 2: Full delegation is optimal if Proposer is sufficiently risk averse, 
i.e., if ​​inf​a∈​[0,1)​​​ −u″​(a)​ / u′​(a)​​ is sufficiently large.

It should be noted that (regardless of Proposer’s risk aversion) optimality of full 
delegation does require our maintained assumption of ​​ v _ ​  ≤  0​. Were Vetoer’s lowest 
type ​​ v _ ​  ∈  ​(0, 1)​​, then full delegation—or even the interval ​​[​ v _ ​, 1]​​—would never be 
an optimal delegation set: it would be strictly worse than ​​[min​{2​ v _ ​, 1}​, 1]​​.

Readers familiar with Alonso and Matouschek (2008) may find it helpful to draw 
a connection between that paper and our Proposition 1. If we had restricted atten-
tion to deterministic mechanisms and assumed that Proposer’s utility is a quadratic 
loss function, then the sufficiency result in Proposition 1 would follow from a result 
in Alonso and Matouschek (2008), even though their model does not have a veto 
constraint and, as such, highlights expertise-based delegation. To make the con-
nection, we observe that when ​u​(a)​  =  − ​​(1 − a)​​​ 2​​, condition (1) is equivalent to 
Alonso and Matouschek’s “backward bias” (p. 264) being convex on ​​[0, 1]​​. Their 
Proposition 2 then implies that if ​​{0, 1}​​ is contained in the optimal delegation set, 
then the interval ​​[0, 1]​​ is contained in the optimal delegation set. But recall from 
Lemma 1 that in choosing among delegation sets, Proposer need not offer any action 
outside ​​[0, 1]​​ and can offer his ideal point ​1​; moreover, he may as well offer the sta-
tus quo ​0​. It follows that full delegation is an optimal delegation set. We emphasize, 
therefore, that Proposition 1 establishes optimality among more general Proposer 
preferences and stochastic mechanisms.16

Consider now necessity in Proposition 1. If Proposer has a linear loss util-
ity, then our preceding discussion explains why a delegation set ​A​ containing  
​​[​ a _ ​, ​a –​]​  ⊆  ​[0, 1]​​ should be pruned to ​A \ ​(​ a _ ​, ​a –​)​​ if the type density is increasing on this 
interval: the expected action increases. Hence, the converse of Corollary 1 holds for 
linear loss utility. For quadratic loss utility (and with additional smoothness assump-
tions), Alonso and Matouschek’s (2008) Proposition 2 implies that ​f ​(v)​​ need not be 
decreasing on ​​[0, 1]​​ for full delegation to be optimal, but a weaker condition is neces-
sary: ​F​(v)​ − ​(1 − v)​ f ​(v)​​ must be increasing on ​​[0, 1]​​. Proposition 1 subsumes these 
two cases by deducing necessity of condition (1) for the linear-quadratic family of 
utilities (Condition LQ).17

B. No Compromise

The other extreme from full delegation is no compromise: Proposer makes a 
take-it-or-leave-it offer of his own ideal action, not offering any other action. Of 
course, Vetoer can choose the status quo as well. When Proposer has a linear loss 
utility—or, a fortiori, if we had permitted ​u​(a)​​ to be convex on ​​[0, 1]​​—then no 

16 In a model without an outside option, Kováč and Mylovanov (2009) provide sufficient conditions for certain 
delegation sets to be optimal when stochastic mechanisms are allowed and Proposer has a quadratic loss function.

17 Following our general methodology discussed in Section IID, our proof of necessity uses the availability of 
stochastic mechanisms. But we can establish that under Condition LQ, (1) is necessary even for full delegation to 
be an optimal delegation set.
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compromise is an optimal delegation set whenever the type density ​f​ is increasing 
on ​​[0, 1]​​. This follows from reversing the previous subsection’s second-order sto-
chastic dominance argument for optimality of full delegation when ​f​ is decreasing. 
But neither is linear loss utility nor convexity of ​F​ on ​​[0, 1]​​ required for optimality 
of no compromise.

PROPOSITION 2: Assume Condition LQ. No compromise is optimal if and only if

	​​ (u′​(1)​ + κ​(1 − t)​)​ ​ 
F​(t)​ − F​(1 / 2)​

  _ 
t − 1 / 2

  ​  ≥ ​ (u′​(0)​ − κs)​ ​ 
F​(1 / 2)​ − F​(s)​

  ___________ 
1 / 2 − s

  ​  

for all  1  ≥  t  >  1 / 2  >  s  ≥  0.​

Under linear loss utility (so ​u′​(1)​  =  u′​(0)​  =  1​ and ​κ  =  0​), the condition in 
Proposition 2 simplifies to ​f ​(1 / 2)​​ being a subgradient of ​F​ at ​1 / 2​ on the domain ​​
[0, 1]​​. This subgradient condition is weaker than ​F​ being convex on ​​[0, 1]​​.

REMARK 1: With linear loss utility, no compromise can be an optimal delegation 
set (i.e., deterministic mechanism) even if the subgradient condition does not hold. 
However, there will then be a stochastic mechanism that Proposer strictly prefers. 
This situation can arise, for example, when the type density is strictly increasing 
except on a small interval around ​1 / 2​, where it is strictly decreasing. Intuitively, 
Proposer would like to delegate a small set of actions around ​1 / 2​ to types close to ​
1 / 2​, but adding such actions to the no-compromise delegation set is deleterious 
because it leads to many types above ​1 / 2​ choosing an action close to ​1 / 2​ rather 
than ​1​. By contrast, lotteries with expected value ​1 / 2​ can be used to attract only 
types close to ​1 / 2​. Example E.1 in online Appendix E elaborates. ​​

Although Proposition 2 assumes Condition LQ, we note that no compromise can 
be an optimal delegation set even otherwise. In particular, it can be shown that if no 
compromise is an optimal delegation set for some ​u​, then it is also an optimal dele-
gation set for any utility function that is a convex transformation of ​u​.

On the other hand, no compromise is not optimal—not even an optimal dele-
gation set—if Proposer’s utility is differentiable at his ideal point ​a  =  1​ (which 
implies ​​u ′ ​​(1)​  =  0​).18 The reason is that when ​​u ′ ​​(1)​  =  0​, Proposer would strictly 
benefit from offering a small interval ​​[1 − ε, 1]​​, or even just the action ​1 − ε​, instead 
of only offering action ​1​. For, Proposer’s decrease in utility from getting an action 
slightly lower than ​1​ is second order, but there is a first-order increase in the proba-
bility of avoiding a veto.

C. Interval Delegation

Both full delegation and no compromise are special cases of interval delegation: 
Proposer offers an interval, and Vetoer chooses an action from either that interval or 
the status quo. It follows from Lemma 1 that when interval delegation is optimal, 

18 Note that when ​u′​(1)​  =  0​, the condition in Proposition 2 fails: its left-hand side (LHS) is ​0​ when ​t  =  1​, 
while its right-hand side is strictly positive when ​s  =  0​.
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there is always an optimal interval of the form ​​[c, 1]​​ for some ​c  ∈  ​[0, 1]​​. One can 
thus interpret interval delegation as Proposer designating a minimally acceptable 
option; implicitly, the maximal acceptable option is Proposer’s ideal point. Interval 
delegation, without a status quo, has been a central focus of the prior literature: 
intervals are simple, tractable, and lend themselves to comparative statics. Arguably, 
intervals also map more naturally into proposals likely to emerge in applications.

PROPOSITION 3: The interval delegation set ​​[​c​​ ⁎​, 1]​​ with ​​c​​ ⁎​  ∈  ​[0, 1]​​ is optimal if

	 (i )	​ κF​(v)​ − u′​(v)​ f ​(v)​​ is increasing on ​​[​c​​ ⁎​, 1]​​;

	 (ii)	​​ (u′​(​c​​ ⁎​)​ + κ​(​c​​ ⁎​ − t)​)​ ​ 
F​(t)​ − F​(​c​​ ⁎​ / 2)​  _ 

t − ​c​​ ⁎​ / 2
  ​  ≥  u′​(​c​​ ⁎​)​ ​ F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​  _ ​c​​ ⁎​ / 2

  ​​ 

		  for all ​t  ∈ ​ (​c​​ ⁎​ / 2, ​c​​ ⁎​]​​; and

	 (iii )	​ u′​(​c​​ ⁎​)​ ​ F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​  _ ​c​​ ⁎​ / 2
  ​  ≥ ​ (u′​(0)​ − κs)​ ​ F​(​c​​ ⁎​ / 2)​ − F​(s)​  _ ​c​​ ⁎​ / 2 − s

  ​​ for all ​s  ∈ ​ [0, ​c​​ ⁎​ / 2)​​.

Conversely, under Condition LQ, the delegation set ​​[​c​​ ⁎​, 1]​​ with ​​c​​ ⁎​  ∈  ​(0, 1)​​ is 
optimal only if conditions (i ), (i i), and (iii ) above hold.

We discuss sufficiency. The intuition for condition (i ) in the proposition is anal-
ogous to that discussed after Proposition 1; it ensures that there is no benefit to not 
fully delegating the interval ​​[​c​​ ⁎​, 1]​​ taking as given that Vetoer can choose ​​c​​ ⁎​​. For 
linear loss utility, the condition reduces to ​F​ being concave on ​​[​c​​ ⁎​, 1]​​. Linear loss 
utility is also helpful to interpret the other conditions. Conditions (ii ) and (iii ) then 
simplify to the requirements that the average density from ​​c​​ ⁎​ / 2​ to ​​c​​ ⁎​​ be simultane-
ously less than that from ​​c​​ ⁎​ / 2​ to ​t​ for all ​t  ∈ ​ (​c​​ ⁎​ / 2, ​c​​ ⁎​]​​ and greater than that from ​
s​ to ​​c​​ ⁎​ / 2​ for all ​s  ∈  ​[0, ​c​​ ⁎​ / 2)​​. Equivalently, the average density from ​​c​​ ⁎​ / 2​ to ​​c​​ ⁎​​ 
equals ​f ​(​c​​ ⁎​ / 2)​​ and ​f ​(​c​​ ⁎​ / 2)​​ is a subgradient of ​F​ at ​​c​​ ⁎​ / 2​ on the domain ​​[0, ​c​​ ⁎​]​​. The 
subgradient condition is analogous to that discussed after Proposition 2. (More gen-
erally, conditions (ii ) and (iii ) with ​​c​​ ⁎​  =  1​ imply the condition of Proposition 2.) 
The additional requirement ensures that the threshold ​​c​​ ⁎​​ is an optimal threshold. See 
Figure 1.

REMARK 2: With linear loss utility, interval delegation is optimal when the type 
distribution is unimodal (i.e., ​F​ is first convex and then concave, or equivalently, 
the density ​f​ is single peaked). Either there will be a ​​c​​ ⁎​  ∈  ​[0, 1]​​ satisfying the three 
conditions of Proposition 3, or the condition in Proposition 2 will be met and no 
compromise is optimal.19

We can extend this observation as follows.

19 Let ​Mo​ be the (unique and strictly positive, for simplicity) mode of ​F​ and let ​Δ​(x)​  ≔  ​ F​(2x)​ − F​(x)​ _ x  ​ − f ​(x)​​.  
​F​ being convex-concave implies that letting ​​c​​ ⁎​ / 2  ≔  max​{x  >  0 : Δ​(x)​  =  0}​​, ​Δ​(x)​  ≥  0​ for ​x  ∈  ​(0, ​c​​ ⁎​ / 2)​​ and ​
Δ​(x)​  ≤  0​ for ​x  ∈  ​(​c​​ ⁎​ / 2, 1]​​. Clearly, ​​c​​ ⁎​ / 2  ≤  Mo  ≤  ​c​​ ⁎​​ and hence ​f​ is decreasing on ​​[​c​​ ⁎​, 1]​​. The convex-concave 
property implies that ​f ​(​c​​ ⁎​ / 2)​​ is a subgradient of ​F​ at ​​c​​ ⁎​ / 2​ on the domain ​​[0, ​c​​ ⁎​]​​, and if ​​c​​ ⁎​ / 2  >  1 / 2​ then ​f ​(1 / 2)​​ is 
a subgradient of ​F​ on the domain ​​[0, 1]​​.
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COROLLARY 3: Assume Condition LQ. Interval delegation is optimal if the type 
density ​f​ is log-concave on ​​[0, 1]​​; if, in addition, ​f​ is strictly log-concave on ​​[0, 1]​​ or 
Proposer’s utility is strictly concave, then there is a unique optimal interval.

Recall that log-concavity is stronger than unimodality, but many familiar distri-
butions have log-concave densities, including the uniform, normal, and exponential 
distributions (Bagnoli and Bergstrom 2005). The proof of Corollary 3 also estab-
lishes that under Condition LQ and log-concavity of the type density on ​​[0, 1]​​, the 
set of optimal interval thresholds is connected: if ​​[​c​ 1​ ⁎​, 1]​​ and ​​[​c​ 2​ ⁎​, 1]​​ are both optimal 
interval delegation sets, then so is ​​[​c​​ ⁎​, 1]​​ for all ​​c​​ ⁎​  ∈  ​[​c​ 1​ ⁎​, ​c​ 2​ ⁎​]​​. Such multiplicity 
arises under the uniform distribution and linear loss utility. Either strict log-concav-
ity of the type density or strict concavity of Proposer’s utility eliminates multiplicity.

Readers familiar with Amador and Bagwell (2013) will note from our discussion 
after Proposition 3 that condition (i) in the proposition plays the same role as con-
dition (c1) on p. 1550 of that paper. In fact, the two conditions are identical, even 
though our analysis accommodates stochastic mechanisms that cannot be reduced to 
their money burning.20 Conditions (ii) and (iii) of Proposition 3 don’t have analogs 

20 Indeed, we conjecture that our methodology, elaborated in Section IID, can be used to show that Amador 
and Bagwell’s (2013) conditions ensure optimality of their delegation sets even among stochastic mechanisms.

Figure 1. Conditions (i)–(iii) of Proposition 3 for Linear Loss Utility

Note: ​F​ is concave on ​​[​c​​ ⁎​, 1]​​; ​f ​(​c​​ ⁎​ / 2)​​ is a subgradient on ​​[0, ​c​​ ⁎​]​​; and the average density on ​​[​c​​ ⁎​ / 2, c]​​ equals ​f ​(​c​​ ⁎​ / 2)​​ 
because ​F​(​c​​ ⁎​)​​ intersects the subgradient.
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in Amador and Bagwell’s work, however, because these concern optimality condi-
tions that turn on our status quo.

It bears highlighting that interval delegation is not always optimal. Consider linear 
loss utility and a single-dipped density (decreasing then increasing) with a dip at ​d 
∈  ​(0, 1)​​. We claim an optimal delegation set is now ​​[0, x]​ ∪ ​{y, 1}​​ for some ​x  ∈  ​[0, d]​​ 
and ​y  ∈  ​[d, 1]​​. To see why, notice that if any action ​a  ∈  ​[0, d]​​ is included, then since 
the density is decreasing on ​​[0, a]​​, the average action is higher when there are no gaps 
among actions in ​​[0, a]​​; recall the discussion around Proposition 1. So ​x​ is the maxi-
mum action allowed below the dip; i.e., within ​​[0, d]​​ the delegation set takes the form ​​
[0, x]​​. On the other hand, if any action ​a  ∈  ​[d, 1]​​ is included, then since the density is 
increasing on ​​[a, 1]​​, the average action is higher when all actions ​​(a, 1)​​ are excluded; 
recall the discussion around Proposition 2. So ​y​ is the minimum action allowed above 
the dip, i.e., within ​​[d, 1]​​ the delegation set takes the form ​​{y, 1}​​ . In fact, because the 
present scenario simply mirrors that discussed in Remark 2, it can be shown that it is 
without loss of optimality to set ​y  =  1​; but this is not needed for the point that interval 
delegation can be suboptimal.21 Furthermore, similar reasoning implies that for cer-
tain more complicated type distributions, with multiple peaks and multiple dips, any 
optimal delegation set with linear loss utility must include some actions in ​​(0, 1)​​ while 
excluding neighborhoods of both ​0​ and ​1​.

D. Methodology

Let us outline the idea behind the proofs of Propositions 1–3. We use a Lagrangian 
method, as has proved fruitful in prior work on optimal delegation, notably in 
Amador and Bagwell (2013). However, the presence of a status quo requires some 
differences in our approach. In particular, while prior work has largely focused on 
optimality of connected delegation sets, our Proposition 2 and Proposition 3 are 
effectively concerned with the optimality of disconnected delegation sets because 
of the status quo. Moreover, our approach provides a simple way to incorporate 
stochastic mechanisms, which, as already highlighted, are often not addressed in 
prior work.

Consider the following relaxed version of the optimization problem (D) for deter-
ministic mechanisms:

(R)	​​ max​ 
α∈

​ ​ ∫ ​(u​(α​(v)​)​ − κ​[vα​(v)​ − ​ 
α ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​α​(s)​ ds]​)​ dF​(v)​​,

​subject to​

	​ vα​(v)​ − ​ 
α ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​α​(s)​ ds  ≥  0  ∀ v  ∈ ​ [​ v _ ​, ​v –​]​.​

Problem (R) is well-behaved because the constraint set is convex and, owing to ​
κ  ≡  ​inf​a∈​[0,1)​​​ − u′′​(a)​​, the objective is a concave functional of ​α​. It differs from 
(D) in two ways. First, the constraint has been relaxed: IC requires the inequality 

21 For completeness, we note that if the density is strictly single-dipped with the dip at ​d  >  1 / 2​, then both full 
delegation and no compromise are strictly suboptimal, which implies that interval delegation is strictly suboptimal.
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to hold with equality. Second, the objective has been modified to incorporate a 
penalty for violating IC. Plainly, if ​​α​​ ⁎​​ is IC and a solution to problem (R), then it 
is also a solution to (D). But we establish (see Lemma A.1 in Appendix A) that in 
this case ​​α​​ ⁎​​ is also a solution to problem (P); i.e., it is optimal among stochastic 
mechanisms. The idea is as follows. If there were a stochastic mechanism that is 
strictly better than ​​α​​ ⁎​​ in problem (P), consider the corresponding deterministic 
mechanism that replaces each lottery by its expected outcome. While this mech-
anism would not be IC in general, we show that it would both be feasible for 
problem (R) and would obtain a strictly higher objective value, contradicting the 
optimality of ​​α​​ ⁎​​ in (R). Establishing a higher value relies on the objective in (R) 
being a concave functional.

The sufficiency results in Propositions 1–3 then obtain from identifying suffi-
cient conditions under which the respective IC mechanisms solve (R). To this 
end, we define a Lagrangian functional corresponding to (R) and exploit the fact 
that if there is a Lagrangian multiplier such that an IC mechanism maximizes the 
Lagrangian with that multiplier, then the IC mechanism solves (R) (see Lemma A.2 
in Appendix A). For each sufficiency result, we separately construct a suitable mul-
tiplier and establish that the delegation set of interest does maximize the Lagrangian 
with that multiplier. This step involves checking that the first-order conditions are 
satisfied; i.e., the (Gateaux) derivative of the Lagrangian in the direction of any 
feasible mechanism is negative. The first-order conditions are sufficient because the 
multipliers are constructed to ensure the Lagrangian functional is concave.

For the necessity results, we first establish in Lemma A.4 in Appendix A that 
under Condition LQ, if a deterministic mechanism ​​α​​ ⁎​​ solves problem (P) then it 
also solves problem (R). The idea is as follows. Suppose a solution ​α​ to problem 
(R) provides a strictly higher value than ​​α​​ ⁎​​. We construct a corresponding IC mech-
anism ​m​ such that ​α​(v)​  =  ​E​ m​(v)​​​​[ a ]​​ for all ​v​. Roughly, monotonicity of ​α​ (by defi-
nition of the set ​​) implies existence of transfers that make ​α​ IC in a quasi-linear 
model; the inequality constraints in (R) mean the transfers can be chosen to be pos-
itive (i.e., they can be viewed as money burning); and, because of Vetoer’s quadratic 
utility, positive transfers can be substituted for by the action variance of suitable 
lotteries. Since ​u″​(a)​  =  − κ​ for ​a  <  1​ under Condition LQ, the condition makes 
the objective in (R) a linear functional in the relevant domain. We can thus show that 
mechanism ​m​ obtains a strictly higher value than ​​α​​ ⁎​​ in (P), a contradiction.

We then establish necessity of the conditions in Propositions 1–3 by showing 
that, unless these conditions are satisfied, the corresponding mechanisms can be 
strictly improved upon in problem (R). Here we use the fact that the constraint set 
in (R) is convex and, therefore, first-order conditions must hold at a solution. More 
specifically, the (Gateaux) derivative of the objective in the direction of any feasible 
mechanism must be negative.

III.  Comparative Statics and Comparisons

A. Comparative Statics

We derive two comparative statics, restricting attention to interval delegation. 
This focus can be justified by implicitly assuming conditions for optimality of 
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interval delegation (Section II), or just because such menus are simple, tractable, or 
relevant for applications.

If Proposer proposes ​A  =  ​[c, 1]​​ with ​c  ∈  ​[0, 1]​​, then Vetoer chooses ​0​ if  
​v  <  c / 2​, ​c​ if ​v  ∈  ​[c / 2, c]​​, ​v​ if ​v  ∈  ​[c, 1]​​, and ​1​ if ​v  >  1​. Hence Proposer’s 
expected utility or welfare from ​A  =  ​[c, 1]​​ is

 ​ W​(c)​  ≔  u​(0)​F​(c / 2)​ + u​(c)​​(F​(c)​ − F​(c / 2)​)​ + ​∫ 
c
​ 
1
​​u​(v)​ f ​(v)​ dv + u​(1)​​(1 − F​(1)​)​.​

Differentiating, the first-order condition for ​​c​​ ⁎​  ∈  ​(0, 1)​​ to be an optimal thresh-
old among interval delegation sets is that it must be a zero of

(2)	​ 2u′​(​c​​ ⁎​)​​[F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​]​ − f ​(​c​​ ⁎​ / 2)​​[u​(​c​​ ⁎​)​ − u​(0)​]​.​

In general there can be multiple optimal thresholds, even among interior thresh-
olds. Accordingly, let the set of optimal thresholds for interval delegation be

	​ ​C​​ ⁎​  ≔ ​ arg max​ 
c∈​[0,1]​

​ ​  W​(c)​.​

We use the strong set order to state comparative statics. Recall that for ​X, Y  ⊆  ℝ​,  
​X​ is larger than ​Y​ in the strong set order, denoted ​X  ​≥​SSO​​ Y​, if for any ​x  ∈  X​ 
and ​y  ∈  Y​, ​min​{x, y}​  ∈  Y​ and ​max​{x, y}​  ∈  X​. We say that ​​C​​ ⁎​​ increases (resp., 
decreases) if it gets larger (resp., smaller) in the strong set order. Since interval del-
egation with a lower threshold gives Vetoer a superset of options to choose from, a 
decrease in ​​C​​ ⁎​​ corresponds to offering more discretion. It can also be interpreted as 
Proposer compromising more. As mentioned after Corollary 3, under Condition LQ 
and a log-concave type density, ​​C​​ ⁎​​ is a (closed) interval. In that case a decrease in ​​
C​​ ⁎​​ is equivalent to a decrease in both ​min ​C​​ ⁎​​ and ​max ​C​​ ⁎​​.

Our comparative statics concern Proposer’s risk aversion and the ex ante pref-
erence alignment between Proposer and Vetoer. We say that Proposer becomes 
strictly more risk averse if the Arrow-Prat coefficient of absolute risk aver-
sion strictly increases in the relevant region: ​− u″​(a)​ / u′​(a)​​ strictly increases for 
all ​a  ∈  ​[0, 1)​​. As is well known, such a change can also be expressed in terms 
of concave transformations of Proposer’s utility. Under Condition LQ, it cor-
responds to a higher weight on the quadratic term. We say that the two players 
are strictly more aligned if Vetoer’s ideal-point density changes from ​f​ to ​g​ with ​g​ 
strict likelihood ratio dominating ​f​ on the interval ​​[0, 1]​​: for all ​0  ≤  ​v​ L​​  <  ​v​ H​​  ≤  1​,  
​f ​(​v​ H​​)​ / f ​(​v​ L​​)​  <  g​(​v​ H​​)​ / g​(​v​ L​​)​​.

PROPOSITION 4: Among interval delegation sets, there is

	 (i )	 more discretion (i.e., ​​C​​ ⁎​​ decreases) if Proposer becomes strictly more risk 
averse; and

	 (ii )	 less discretion (i.e., ​​C​​ ⁎​​ increases) if Vetoer becomes strictly more aligned 
with Proposer.
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The proof uses the interval delegation structure and monotone comparative stat-
ics under uncertainty, specifically Karlin’s (1968) variation diminishing property for 
single-crossing functions and comparative statics from Milgrom and Shannon (1994).

The intuition for part (i) of the proposition is simply that greater risk aversion makes 
Proposer more concerned about a veto, and hence she compromises more. The intu-
ition for part (ii) is that greater ex ante alignment makes Proposer less concerned about 
a veto, and hence she compromises less. Yet, the precise conditions in the proposition 
are nuanced. In particular, the stochastic ordering used in our notion of alignment 
is important: one can construct examples in which, among interval delegation sets, 
Proposer optimally gives Vetoer strictly more discretion when there is a right-shift in 
the type density in the sense of either hazard or reversed-hazard rate (both of which 
are stronger than first-order stochastic dominance but weaker than a likelihood ratio 
shift). Furthermore, absent the focus on interval delegation, it is not necessarily clear 
how to relate changes in delegation sets with the degree of discretion or compromise.

It is instructive to contrast part (ii) of Proposition 4 with the expertise-based del-
egation literature. The broad finding there is that among interval delegation, greater 
preference similarity in a suitable sense leads to more discretion (Holmström 1984, 
Theorem 3). The difference owes to and highlights the distinct rationales for discre-
tion. In those models, the delegator would like to give the agent discretion to benefit 
from the agent’s expertise; the degree of discretion is limited by the extent of pref-
erence misalignment. In our setting, on the other hand, the agent is given discretion 
only because of her veto power; greater ex ante preference alignment mitigates that 
concern.

EXAMPLE 1: Under Condition LQ, the first-order condition for an optimal interval 
threshold (i.e., expression (2) equals zero) becomes

	​ 2​(1 + γ − 2γ ​c​​ ⁎​)​​[F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​]​  =  ​c​​ ⁎​​(1 + γ − γ ​c​​ ⁎​)​ f ​(​c​​ ⁎​ / 2)​.​

Recall from Corollary 3 that, when combined with boundary conditions, there will 
be a unique solution for any strictly log-concave type density; moreover, the corre-
sponding interval is then an (unrestricted) optimal mechanism. Given uniqueness, 
the implicit function theorem can be used to affirm the general comparative statics 
of Proposition 4; moreover, the first-order condition can also be used to compute 
numerically the optimal interval threshold for standard distributions. Figure 2 illus-
trates for normal distributions. The left panel verifies comparative statics already 
discussed; note that a higher mean ​μ​ is a likelihood ratio right shift and hence more 
alignment.22 The right panel shows comparative statics in the variance of the dis-
tribution. We see that there is less discretion when the variance is lower, with the 
optimal threshold converging, as ​σ  →  0​, to Proposer’s optimal offer, ​0.9​ , to type ​
μ  =  0.45​. 

While we do not have general comparative statics results in the variability of the 
type distribution, it can be shown that for any strictly unimodal distribution with 

22 When ​μ  ≥  1​, a higher ​μ​ can be viewed as shifting Vetoer overall further away to the right of Proposer, but 
what is relevant is the change of the distribution on the interval ​​[0, 1]​​.
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mode ​Mo  ≥  0​, an optimal interval delegation set has more compromise than if 
Proposer knew Vetoer’s type to be ​Mo​. That is, if ​​c​​ ⁎​​ is an optimal interval threshold, 
then ​​c​​ ⁎​  ≤  min​{2Mo, 1}​​; the inequality is strict if ​Mo  ∈  ​(0, 1 / 2)​​. Adding this kind 
of uncertainty to the complete-information model of Romer and Rosenthal (1978) 
thus increases the extent of Proposer’s compromise.

Comparative statics with respect to changes in the status quo are ambiguous. In 
particular, one may conjecture that increasing the status quo from ​0​ towards ​1​ would 
reduce the optimal amount of discretion or extent of compromise (i.e., increase ​​C​​ ⁎​​,  
as in Proposition 4(ii)). This is not assured, however, even in the simplest case of 
linear loss utility and a strictly log-concave density. To see that, observe using the 
subgradient condition discussed after Proposition 2 that no compromise can be 
(uniquely) optimal given our status quo of ​0​ for suitable log-concave distributions 
with mode in ​​(0, 1)​​. But if the status quo is raised to some ​s​ in between the mode 
and ​1​, then full delegation under the new status quo (i.e., ​​[s, 1]​​) becomes optimal. 
Discretion has increased.

B. Comparisons

This subsection compares the outcome of optimal delegation with two game 
forms considered in earlier work.

A natural starting point is the incomplete-information version of the Romer 
and Rosenthal (1978) model. Proposer makes a take-it-or-leave it proposal ​a  ∈  ℝ​ , 
which Vetoer can accept or veto. This can be viewed as restricting Proposer to single-
ton delegation sets. Clearly, Proposer is strictly worse off in this institution unless no 
compromise is the optimal mechanism. We assume throughout this subsection that 
no compromise is not an optimal interval delegation set; as noted in Subsection IIB 
it is sufficient that Proposer’s utility ​u​(a)​​ is differentiable at his ideal point ​a  =  1​ 
(hence ​u′​(1)​  =  0​).23 We will see below that not only does Proposer strictly benefit 

23 A weaker condition suffices: ​2u′​(1)​​[1 − F​(1 / 2)​]​  <  f ​(1 / 2)​​[u​(1)​ − u​(0)​]​​. This ensures that ​1​ is not an opti-
mal singleton proposal, nor is ​​{1}​​ an optimal interval delegation set. Recall that when ​u​ is not differentiable at ​1​,  
​u′​(1)​​ refers to the left derivative.

Figure 2. Optimal Interval Thresholds for Normal Distributions (Mean ​μ​, Variance ​​σ​​ 2​​) and  
Linear-Quadratic Proposer Utility, ​u​(a)​  =  − ​(1 − γ)​|1 − a| − γ ​​(1 − a)​​​ 2​​
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from optimal delegation, but so does Vetoer under some conditions, even when full 
delegation is not optimal for Proposer.

Matthews (1989) studies cheap talk before veto bargaining: prior to Proposer 
making a singleton proposal, Vetoer can send a costless and nonbinding message. As 
usual in cheap-talk games there is an uninformative and hence noninfluential equi-
librium, in which Proposer makes the same proposal, ​​a​ U​​  >  0​, as he would absent 
the possibility of cheap talk. Matthews provides conditions under which there is 
also an equilibrium with informative and influential cheap talk; it is sufficient given 
the support of our type density that ​u′​(1)​  =  0​ (or that even the weaker condition in 
fn. 22 holds). A set of low Vetoer types pool on a “veto threat” message, while the 
complementary set of high types pool on an “acquiescing” message. In response to 
the latter message, Proposer offers ​a  =  1​; in response to the veto threat Proposer 
offers some ​​a​ I​​  ∈  ​(0, 1)​​. The former proposal is accepted by all types that acqui-
esced, while the latter is accepted by only a subset of types that made the veto 
threat; types below some strictly positive threshold exercise the veto. An influen-
tial cheap-talk equilibrium is outcome equivalent to the delegation set ​​{​a​ I​​, 1}​​ in our 
framework.

There can be multiple cheap-talk equilibria with distinct outcomes, both among 
influential equilibria and among noninfluential equilibria (i.e., distinct ​​a​ I​​​ and ​​a​ U​​​ 
respectively). Matthews shows that ​​a​ I​​  <  ​a​ U​​​ in any two equilibria of the respective 
kinds; moreover, he provides conditions under which ​​a​ I​​​ is unique; i.e., all influen-
tial cheap-talk equilibria have the same outcome (Matthews 1989, Remark 3). As 
elaborated in the proof of our Proposition 5, multiplicity is ruled out when the fol-
lowing function has a unique zero:

(3)	​ 2u′​(a)​​[F​(​(1 + a)​ / 2)​ − F​(a / 2)​]​ − f ​(a / 2)​​[u​(a)​ − u​(0)​]​.​

By way of comparison, we recall that a zero of a similar function given in (2) is the 
first-order condition for optimality of an interval delegation set’s threshold.

PROPOSITION 5: Assume no compromise is not an optimal delegation set, and that 
either (2) or (3) is strictly downcrossing on ​​(0, 1)​​.24 Any optimal interval delega-
tion set ​​[​c​​ ⁎​, 1]​​ has ​​c​​ ⁎​  <  min​{​a​ I​​, ​a​ U​​}​​ for any influential and noninfluential cheap-talk 
equilibrium ​​a​ I​​​ and ​​a​ U​​​, respectively. Hence, if ​​[​c​​ ⁎​, 1]​​ is an optimal delegation set, then 
it strongly Pareto dominates any cheap-talk outcome, influential or not.

By strong Pareto dominance, we mean that Proposer is ex ante better off, while 
Vetoer is better off no matter his type; moreover, a set of Vetoer types that have 
strictly positive probability are strictly better off. Proposition 5’s conclusions hold 
trivially when full delegation is the optimal delegation set (​​c​​ ⁎​  =  0​), even without 
its hypotheses. But under its hypotheses, the conclusions also apply to other optimal 
intervals. The function (2) is strictly downcrossing on ​​(0, 1)​​ under Condition LQ 
and either strict log-concavity of the type density or strict concavity of Proposer’s 
utility. Indeed, this underlies the uniqueness claim in Corollary 3; see Lemma B.1 

24 A function ​h​(a)​​ is strictly downcrossing if for any ​​a​ L​​  <  ​a​ H​​​, ​h​(​a​ L​​)​  ≤  0  ⇒  h​(​a​ H​​)​  <  0​.
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in online Appendix B. Moreover, Corollary 3 also assures that interval delegation is 
then optimal.

Here is the intuition behind Proposition 5. Consider Proposer’s trade-off when 
marginally lowering his proposal ​​a​ I​​  ∈  ​(0, 1)​​ in an influential cheap-talk equilibrium. 
The benefit is that some types just below ​​a​ I​​ / 2​ will accept rather than veto; the cost 
is that the action induced from all types in the interval ​​(​a​ I​​ / 2, ​(1 + ​a​ I​​)​ / 2)​​ is lower. 
When Proposer instead delegates the interval ​​[​a​ I​​, 1]​​, the benefit from lowering ​​a​ I​​​ is 
unchanged while the cost is reduced, because types above ​​a​ I​​​ are now unaffected by the 
change. Proposer is thus more willing to compromise when choosing among interval 
delegation sets rather than under cheap talk.25 Consequently, all Vetoer types bene-
fit—at least weakly, and some strictly—from optimal interval delegation as compared 
to cheap talk. While Proposer could be harmed by a restriction to interval delegation, 
there is strong Pareto dominance when intervals constitute optimal delegation.

We note that if interval delegation is not optimal, then some Vetoer types may be 
worse off under optimal delegation than under cheap talk. For example, it is possible 
that the optimal delegation set takes the form ​​{​a​​ ⁎​, 1}​​ with ​​a​​ ⁎​  ∈  ​(0, 1)​​. In this case 
one can show that necessarily ​​a​​ ⁎​  <  ​a​ I​​​ in any influential cheap-talk equilibrium; 
intuitively, while ​​a​ I​​​ is sequentially rational, committing to a lower proposal helps 
ex ante by inducing action ​1​ rather than ​​a​ I​​​ from some types. Consequently, while 
Proposer strictly benefits from optimal delegation, some Vetoer types would strictly 
prefer either cheap-talk outcome.

IV.  Applications

We now discuss some implications and interpretations of our analysis in the con-
text of three applications.

A.  Menus of Products 

Our framework can be applied to questions of which products to present custom-
ers with, albeit in a stylized manner. For an illustration, suppose a salesperson has 
at his disposal a set of products indexed by ​a  ∈  ​[0, 1]​​, with higher ​a​ corresponding 
to higher quality. The price of product ​a​ is ​k ​a​​ 2​​, where ​k  >  0​. This pricing can be 
interpreted as emerging from a constant markup on a quadratic cost. Consumers 
vary in how they trade off quality and price; specifically, a consumer of type ​v  ≥  0​ 
has gross valuation ​va​, and hence net-of-price payoff ​va − k ​a​​ 2​​. If a consumer does 
not purchase, her payoff is zero​​; a consumer cannot purchase a product she is not 
shown (perhaps because of ignorance, or because the salesperson can claim it is 
unavailable). Observe that we can normalize ​k  =  1 / 2​, as this simply rescales the 
consumer type ​v​. The salesperson receives a higher commission on better products, 
reflected by his strictly increasing and concave utility ​u​(a)​​. Given any belief den-
sity the salesperson holds about a particular consumer’s valuation the salesperson’s 
problem of which products to show the consumer is precisely that of determining 
the optimal delegation set in our setting.

25 The hypotheses in Proposition 5 ensure that this local-improvement intuition extends to global optimality.
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Take the case of a linear ​u​. Propositions 1–3 imply that if the density of ​v​ is 
log-concave, it is optimal to show the consumer some set of “best products” (i.e., an 
interval of products ​​[c, 1]​​); if the density is strictly decreasing, then all products should 
be shown; and if the density is strictly increasing, then only the highest-quality prod-
uct should be shown. Proposition 4(i) implies that if the commission schedule 
changes to make ​u​ more concave, the salesperson shows a larger set of products. 
Proposition 4(ii) implies that if wealthier consumers (or, if wealth is unobservable, 
some proxy thereof) have a higher distribution of ​v​ in the likelihood ratio sense, then 
wealthier consumers are shown a smaller set of products.

What if a consumer can choose the information to disclose about her type?26 
Specifically, suppose, as is standard in voluntary disclosure models, that any type ​
v​ can send any message (a closed subset of ​​ℝ​+​​​) that contains ​v​. The salesperson 
decides on the product menu after observing the message. No matter the type dis-
tribution, there are at least two equilibria: one in which no type discloses any infor-
mation, and one in which all types fully disclose.27 Every consumer type prefers the 
former equilibrium to the latter; some types have a strict preference unless nondis-
closure results in only a single product being shown (Proposition 2). In general there 
can be other equilibria, some of which may dominate the nondisclosure equilibrium 
in terms of ex ante consumer welfare.28 However, when the salesperson offers all 
products under the prior (Proposition 1), the nondisclosure equilibrium is consumer 
optimal—not only ex ante, but for every consumer type.

B.  Lesser-Included Offenses

The legal doctrine of lesser-included offenses in criminal cases is “the concept 
that a defendant may be found guilty of an uncharged lesser offense, instead of 
the offenses formally charged … a recognized and well-established feature of the 
American criminal justice system” (Adlestein 1995, pp. 200–201). For instance, 
“the lesser-included offenses of first degree murder include second degree murder, 
voluntary manslaughter, involuntary manslaughter, criminally negligent homicide, 
and aggravated assault” (Orzach and Spurr 2008, p. 239). The framework studied in 
our paper provides a formal lens to understand welfare implications of the doctrine 
for both prosecutors and defendants.

Our model views ​v​ as a jury’s (or judge’s) evaluation of the optimal penalty or true 
severity of a crime. The defendant is delivered a penalty or sentence corresponding 
to the most severe charge on which there is a conviction. Verdict ​0​ corresponds to 
a complete acquittal, which is always available to the jury, while ​1​ is the maximum 

26 Ali, Lewis, and Vasserman (2019); Hidir and Vellodi (2021); and Ichihashi (2020) consider optimal con-
sumer disclosure in models that emphasize price discrimination.

27 For any unused message, ​V  ⊆  ​ℝ​+​​​, let the salesperson put probability ​1​ on ​v  =  max V​ (or, if ​sup V  =  ∞​, on 
some ​v  ∈  V​ with ​v  ≥  1​) and offer the correspondingly optimal singleton menu. It is then straightforward that no 
consumer type does strictly better by deviating to any unused message.

28 For example, suppose the type density is strictly decreasing on a small interval ​​[0, δ]​​ and strictly increas-
ing thereafter, and ​u​ is linear. Then, under nondisclosure, the salesperson’s optimal menu is the singleton ​​{1}​​ 
(Proposition 2). There is also a partial-disclosure equilibrium in which types ​​[0, δ]​​ pool on the message ​​[0, δ]​​ and all 
higher types pool on the message ​​[δ, ∞)​​; the former message leads to the menu ​​[0, δ]​​ by the full-delegation logic of 
Corollary 1, while the latter message leads to the singleton ​​{1}​​ by the no-compromise logic of Proposition 2. Every 
consumer type prefers this partial-disclosure equilibrium to the nondisclosure equilibrium, some strictly.
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penalty or the maximum charge the prosecutor can realistically put forward in a 
given case. We assume the jury will convict the defendant of the closest charge to ​
v​ that is available.29 In a stylized manner, the lesser-included offenses doctrine can 
be modeled as implying that if a charge ​a​ is included, then the jury can choose any 
verdict in ​​[0, a]​​. Plainly, if a prosecutor has the option to put forward any subset of 
charges—or equivalently, to have the jury selectively instructed about only specific 
lesser offenses—then the doctrine (or the jury being instructed of it in full) is just a 
constraint. It necessarily makes the prosecutor worse off ex ante, at least weakly. It 
follows that if the defendant’s utility is the additive inverse of the prosecutor’s, then 
the doctrine can only help the defendant ex ante.

Our analysis clarifies, however, circumstances in which the doctrine does not 
strictly hurt the prosecutor, or help the defendant, ex ante. Assume the prosecu-
tor’s utility ​u​ is increasing in the verdict.30 Under the doctrine, the prosecutor then 
brings the maximum charge. So the prosecutor’s ex ante utility is the same absent 
the doctrine if and only if full delegation is unconstrained optimal. So long as ​u​ is 
concave, Proposition 1 can be applied; in particular, the doctrine is irrelevant for any 
prosecutor who is sufficiently risk averse (Corollary 2). On the other hand, from an 
ex post perspective, it is precisely when full delegation is not prosecutor optimal 
that the prosecutor will strictly benefit and the defendant strictly lose, with positive 
probability, from the doctrine.

The foregoing discussion assumes the prosecutor can bring any set of charges. If 
the prosecutor were restricted to bringing a single charge, then the welfare implica-
tions of the lesser-included offenses doctrine are less clear cut. The issue boils down 
to whether full delegation is ex ante preferred by the relevant party to the prosecutor’s 
optimal single charge. We observe that now the doctrine ex ante benefits the prosecu-
tor and hurts the defendant when full delegation is unconstrained optimal, whereas the 
comparison is reversed when no compromise is unconstrained optimal (Proposition 2).

C. Legislatures and Executives

Legislatures write bills that can be vetoed by executives. But executives do 
more than just approve or veto: as emphasized by Epstein and O’Halloran (1996, 
pp. 378–79), “all laws passed by Congress are implemented by the executive branch 
in one form or another,” and, since, “Presidents generally appoint administrators 
with preferences similar to their own” the amount of discretion given is a “key vari-
able in … congressional-executive relations.” One interpretation of our results is 
that they predict bills granting the executive more discretion when there is greater 
preference misalignment between the executive and the legislature, in the sense of 
Proposition 4(ii). This flips the comparative static emphasized in the political science 
literature (Epstein and O’Halloran 1996, 1999), which stems from expertise-based 

29 So a jury may convict on an excessive charge if a more appropriate one is not available. The US Supreme 
Court opined in its ruling on Beck v. Alabama that “when the evidence establishes that the defendant is guilty of a 
serious, violent offense but leaves some doubt as to an element justifying conviction of a capital offense, the failure 
to give the jury such a ‘third option’ [a lesser offense] inevitably enhances the risk of an unwarranted conviction.” 
(447 US 625, 1980).

30 That prosecutors seek to maximize the penalty is a common assumption in law and economics since  
Landes (1971).
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delegation models.31 Of course, in practice one expects both the expertise-based 
rationale and our veto-based one to coexist to varying degrees.

There are examples of legislatures apparently providing misaligned executives 
with veto power greater discretion than the legislature would consider optimal. A 
case in point is the “US Troop Readiness, Veterans’ Care, Katrina Recovery, and 
Iraq Accountability Appropriations Act” (House Resolution 2206) enacted in May 
2007 that provided funding for the United States’ war in Iraq. Congress passed 
an earlier version, House Resolution 1591, that set a deadline of April 2008 for 
US troops to withdraw from Iraq. This suggests that, even after accounting for any 
expertise-based delegation rationale, Congress preferred a relatively tight deadline. 
But the bill was vetoed by President George W. Bush. Although Democrats con-
trolled both chambers of Congress, they did not have the requisite supermajority to 
override the veto. To secure the President’s approval, the eventual Act replaced the 
withdrawal deadline with vague metrics that gave the President more discretion.

We must also stress an alternative perspective on our results: rather than passing 
bills that grant ex post discretion, discretion can manifest in the executive effectively 
selecting which bill (from some subset, none of which grant ex post discretion) 
the legislature passes. For example, the president may be consulted by Congress 
about different versions of legislation. These two forms of discretion are equivalent 
within our model. An empirical test of our model’s predictions in the political arena 
would have to overcome this challenge, and that of the coexistence of expertise- and 
veto-based delegation rationales.

V.  Conclusion

We have studied Proposer’s optimal mechanism, absent transfers, in a simple 
model of veto bargaining. Our main results identify sufficient and necessary condi-
tions for the optimal mechanism to take the form of certain delegation sets, includ-
ing full delegation, no compromise, and more generally interval delegation. While 
we have focused on a quadratic loss function for Vetoer, our analytical methodology 
can be applied to deduce optimality of these delegation sets for a broader class 
of Vetoer preferences. Specifically, the methods can be readily applied to Vetoer 
utility functions of the form ​va + b​(a)​​, for any differentiable and strictly concave  
function ​b​. The conditions in Propositions 1–3 would be more complicated, how-
ever. Our methodology could also be used to deduce optimality of other kinds of 
delegation sets, for example Proposer offering his ideal point and one additional 
compromise option.

In some applications it is plausible that Vetoer can choose among multiple 
default options. For instance, there may be two internal candidates available to an 
organization for an open position even if it rejects those put forward by a search 
committee. Formally, suppose Vetoer has available a finite set of actions to choose 
among if she exercises her veto. Proposer’s optimal delegation set can be obtained 

31 For exceptions and caveats, see, for example, Volden (2002) and Huber and McCarty (2004). Volden (2002, 
p. 112) notes that modeling the executive’s veto is important for his finding that “there are conditions under which 
discretion is increased upon a divergence in legislative-executive preferences.” The mechanism underlying his findings 
is different from that in our paper, however; in particular, expertise-based delegation is still essential to his analysis.
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by simply solving a series of separate problems analogous to ours, and then “stitch-
ing” the solutions together. Let us illustrate assuming Vetoer has only two options 
upon a veto, which we denote ​0​ and ​​a​​ ⁎​  >  0​. If ​​a​​ ⁎​  >  1​, then Proposer solves the 
problem we have studied—with a single veto option at ​0​—to determine a delegation 
set ​A  ⊆  ​[0, 1]​​; separately, he solves an analogous problem in which the single veto 
option is ​​a​​ ⁎​​ to determine a delegation set ​A′  ⊆  ​[1, ​a​​ ⁎​]​​. The overall optimal delega-
tion set is simply ​A ∪ ​A ′ ​​. If, on the other hand, ​​a​​ ⁎​  <  1​, then Proposer determines 
an optimal ​A  ⊆  ​[0, ​a​​ ⁎​]​​ with veto option ​0​ and her ideal point viewed as ​​a​​ ⁎​​, and an 
optimal ​A′  ⊆  ​[​a​​ ⁎​, 1]​​ with the veto option viewed as ​​a​​ ⁎​​ and her true ideal point ​1​; 
the overall optimal delegation set is again ​A ∪ A′​. As an example, assume Proposer 
has linear loss utility and the type distribution is unimodal with mode less than ​1​. 
Following Remark 2, our model’s solution is interval delegation with a threshold at 
some ​​c​​ ⁎​  ∈  ​[0, 1]​​. So long as the additional veto option is ​​a​​ ⁎​  ≥  ​c​​ ⁎​​, it follows that 
the solution is unchanged: if ​​a​​ ⁎​  ∈  ​[​c​​ ⁎​, 1]​​, then ​​a​​ ⁎​​ was already part of the optimal 
delegation set; if ​​a​​ ⁎​  >  1​, then the decreasing density to the right of ​1​ means, by 
Proposition 2, that no compromise is optimal on ​​[1, ​a​​ ⁎​]​​.

A key assumption underlying our analysis is that of Proposer commitment. In 
some contexts Proposer may be unable to preclude reapproaching Vetoer with 
another proposal (or menu of proposals) following a veto. When the optimal mech-
anism in our setting is full delegation, we believe that such lack of commitment is 
not problematic. By offering the full-delegation menu to begin with, bargaining will 
effectively conclude at the first opportunity.

When full delegation is not optimal, however, matters are considerably more 
nuanced. Sequential veto bargaining without commitment has received only limited 
theoretical attention, largely in finite-horizon models with particular type distribu-
tions (e.g., Cameron 2000). In ongoing research, we are studying an infinite-horizon 
model. Our preliminary results suggest that, owing to single-peaked preferences, 
non-Coasian dynamics can emerge that allow Proposer to obtain her commitment 
solution when players are patient.

Appendix A

Appendix A contains the proofs of Propositions 1–3. The proofs of all other 
results, and additional details and examples, are in online Appendices B–F.

Proofs of Propositions 1, 2, and 3

In this Appendix we assume the support of the type distribution ​F​ is ​​[0, 1]​​. This 
is without loss (even among stochastic mechanisms) because it is always optimal 
for Proposer to choose action ​1​ for types above ​1​ and, given the outside option, to 
choose action ​0​ for types below ​0​.32

32 Formally, consider any IC and IR mechanism ​m​. Define another mechanism ​​m ̃ ​​ such that for any type ​v​, ​​m ̃ ​​(v)​​ 
is a lottery among

	 ​  ≔  ​{​δ​0​​, ​δ​1​​}​ ∪ ​{m​(​v ˆ ​)​ : ​v ˆ ​  ∈  ​[0, 1]​  and  ​E​ m​(​v ˆ ​)​​​​[a]​  ≤  1}​​

that type ​v​ likes the most in this set, with ties broken in Proposer’s favor. Plainly, ​​m ̃ ​​ satisfies IC and IR. Since  
​​E​ m​(v)​​​​[a]​  ≥  0​ for all ​v  ≥  0​ (because ​m​ satisfies IR), it follows that for any type ​v  <  0​, ​​m ̃ ​​(v)​  =  ​δ​0​​​. As IR also 
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A. Sufficient Conditions

For convenience, we recall Proposer’s problem (P):

(P)	​​ max​ 
m∈

​ ​ ​∫ 
0
​ 
1
​​​E​ m​(v)​​​​[u​(a)​]​ dF​(v)​​,

​subject to​

(IC-env)	​ ​E​ m​(v)​​​​[av − ​a​​ 2​ / 2]​ − ​∫ 
0
​ 
v
​​​E​ m​(x)​​​​[a]​ dx  =  0    ∀ v  ∈  ​[0, 1]​.​

We also recall the relaxed problem (R):

(R)	​​ max​ 
α∈

​ ​ ​∫ 
0
​ 
1
​​​(u​(α​(v)​)​ − κ​[vα​(v)​ − ​ 

α ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​α​(x)​ dx]​)​ dF​(v)​​,

​subject to​

	​ vα​(v)​ − ​ 
α ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​α​(x)​ dx  ≥  0    ∀ v  ∈  ​[0, 1]​.​

Problem (P) concerns stochastic mechanisms while problem (R) concerns deter-
ministic ones. In general, there need be no deterministic mechanism that solves 
problem (P). In particular, the solution to problem (R) need not be incentive com-
patible (as problem (R) only has a relaxed incentive constraint) and hence need not 
be feasible in problem (P). Example E.1 in online Appendix E illustrates. However, 
the following result holds.

LEMMA A.1: Suppose ​​α​​ ⁎​  ∈  ​ solves problem (R) and is incentive compatible. 
Then ​​α​​ ⁎​​ also solves (P).

PROOF: 
To obtain a contradiction, suppose ​​α​​ ⁎​​ does not solve (P). Since ​​α​​ ⁎​​ is, by assump-

tion, feasible for (P), there is ​m  ∈  ​ that is feasible for (P) and achieves a strictly 
higher objective value in (P) than ​​α​​ ⁎​​. Define ​​α – ​  ∈  ​ by setting ​​α – ​​(v)​  ≔  ​E​ m​(v)​​​​[ a ]​​ for 

each ​v​. It holds that ​​∫ 0​ 
v​​​E​ m​(x)​​​​[ a ]​ dx  = ​ ∫ 0​ 

v​​​α – ​ ​(x)​ ds​, while for any ​v​ Jensen’s inequality 

implies that for any ​v  ≤  0​, ​​E​ m​(v)​​​​[a]​  ≤  0​, it follows that for any ​v  ≤  0​, Proposer’s expected utility under ​​m ̃ ​​(v)​​ 
is higher than his expected utility under ​m​(v)​​. For any type ​v  ≥  1​, ​​m ̃ ​​(v)​  =  ​δ​1​​​ is Proposer’s ideal action. For any  
​v  ∈  ​(0, 1)​​, there are two cases. First, for any ​v​ such that ​​E​ m​(v)​​​​[a]​  >  1​, ​​δ​1​​​ is uniquely optimal for ​v​ in . Second, for 
any ​v​ such that ​​E​ m​(v)​​​​[a]​  ≤  1​, ​m​ being IC implies that either ​​δ​1​​​ or ​m​(v)​​ is optimal for ​v​ in ​​, and we have specified 
that ties are broken in favor of Proposer. In either case, Proposer’s expected utility under ​​m ̃ ​​(v)​​ is higher than his 
expected utility under ​m​(v)​​ for ​v  ∈  ​(0, 1)​​. In sum, Proposer prefers ​​m ̃ ​​ to ​m​.
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implies ​​E​ m​(v)​​​​[av − ​a​​ 2​ / 2]​  ≤  v​α – ​ ​(v)​ − ​α – ​ ​​(v)​​​ 2​ / 2​. Hence, feasibility of ​m​ in (P) 
implies feasibility of ​​α – ​​ in (R). Moreover,

	​ ​∫ 
0
​ 
1
​​​(u​(​α – ​​(v)​)​ − κ​[v​α – ​​(v)​ − ​ 

​α – ​ ​​(v)​​​ 2​
 _____ 

2
 ​  − ​∫ 

0
​ 
v
​​​α – ​​(x)​ dx]​)​ dF​(v)​​

	​ ≥  ​∫ 
0
​ 
1
​​​(​E​ m​(v)​​​​[u​(a)​ − κ​(va − ​ ​a​​ 2​ _ 

2
 ​)​]​ + κ​∫ 

0
​ 
v
​​​E​ m​(x)​​​​[a]​ dx)​ dF​(v)​​

	​ =  ​∫ 
0
​ 
1
​​​E​ m​(v)​​​​[u​(a)​]​ dF​(v)​​

	​ >  ​∫ 
0
​ 
1
​​u​(​α​​ ⁎​​(v)​)​ dF​(v)​​

	​ =  ​∫ 
0
​ 
1
​​​(u​(​α​​ ⁎​​(v)​)​ − κ​[v ​α​​ ⁎​​(v)​ − ​ 

​α​​ ⁎​ ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​​α​​ ⁎​​(x)​ dx]​)​ dF​(v)​,​

where the first inequality holds because the first line is a concave functional (by the 
definition of ​κ  ≡  ​inf​a∈​[0,1)​​​ −u′​(a)​​), the first equality holds because ​m​ is feasible in 
(P), the second inequality holds because of our assumption that ​m​ achieves a strictly 
higher value than ​​α​​ ⁎​​, and the final equality holds because ​​α​​ ⁎​​ being IC implies it is 
feasible in (P). Therefore, ​​α​​ ⁎​​ is not optimal in (R), a contradiction. ∎

To show that a given delegation set solves the relaxed problem, we define a 
Lagrangian functional and use the fact, stated as Lemma A.2 below, that it is enough 
to find a Lagrangian multiplier such that the action rule induced by the delegation 
set maximizes the Lagrangian with that multiplier. Given ​α  ∈  ​ and an increasing 
and right-continuous function ​Λ​(v)​​, let the Lagrangian be given by

(A.1)

​​(α, Λ)​  ≔  ​∫ 
0
​ 
1
​​​(u​(α​(v)​)​ f ​(v)​ − κ f ​(v)​​[vα​(v)​ − ​ 

α ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​α​(x)​ dx]​)​ dv​

	​ + ​∫ 
0
​ 
1
​​​(vα​(v)​ − ​ 

α ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​α​(x)​ dx)​ dΛ​(v)​​

	​ = ​ ∫ 
0
​ 
1
​​​(u​(α​(v)​)​ f ​(v)​ − α​(v)​​[κF​(v)​ − Λ​(v)​]​ − κ f ​(v)​​[vα​(v)​ − ​ 

α ​​(v)​​​ 2​
 _ 

2
  ​]​)​ dv​

	​ + ​∫ 
0
​ 
1
​​​(vα​(v)​ − ​ 

α ​​(v)​​​ 2​
 _ 

2
  ​)​ dΛ​(v)​ + ​∫ 

0
​ 
1
​​α​(v)​  dv​[κF​(1)​ − Λ​(1)​]​,​

where the second equality follows from integration by parts.33

33 ​​∫ 0​ 
v​​α​(s)​ ds​ is continuous and ​κF​(v)​ − Λ​(v)​​ has bounded variation as the difference of two increasing functions. 

Hence, the Riemann-Stieltjes integral ​​∫ 0​ 1​​​∫ 0​ 
v​​α​(s)​ dsd​[κF​(v)​ − Λ​(v)​]​​ exists and integration by parts is valid.
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LEMMA A.2: Let ​​α​​ ⁎​​ be induced by a delegation set.34 Suppose there is an increas-
ing and right-continuous function ​Λ​ such that ​​(​α​​ ⁎​, Λ)​  ≥  ​(α, Λ)​​ for all ​α  ∈  A​. 
Then ​​α​​ ⁎​​ solves problem (R).

Here is the idea. Since ​​α​​ ⁎​​ is incentive compatible (as it is induced by a dele-
gation set), it is feasible for the relaxed problem (R) and satisfies all inequality 
constraints as equalities. This implies that complementary slackness is satisfied for 
any Lagrange multiplier ​Λ​. It follows that ​​α​​ ⁎​​ solves problem (R) if it maximizes the 
Lagrangian functional.

PROOF: 
Let ​Obj​(α)​​ denote the value of the objective function in problem (R) with mech-

anism ​α​. Since ​​α​​ ⁎​​ is incentive compatible,

	​ v ​α​​ ⁎​​(v)​ − ​ 
​α​​ ⁎​ ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​​α​​ ⁎​​(x)​ dx  =  0,​

and therefore ​Obj​(​α​​ ⁎​)​  =  ​(​α​​ ⁎​, Λ)​​. For any ​α  ∈  ​ that is feasible for (R),

	​ vα​(v)​ − ​ 
α ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​α​(x)​ dx  ≥  0;​

since ​Λ​ is nondecreasing, this implies ​​(α, Λ)​  ≥  Obj​(α)​​. We conclude

	​ Obj​(​α​​ ⁎​)​  =  ​(​α​​ ⁎​, Λ)​  ≥  ​(α, Λ)​  ≥  Obj​(α)​ .​ ∎

To apply Lemma A.2, we will use a first-order approach; i.e., for the action rule ​α​ 
induced by the desired delegation set, we construct a multiplier and verify that given 
this multiplier, the Lagrangian’s Gateaux differential at ​α​ is negative in any feasi-
ble direction. This approach is valid so long as the constructed multiplier makes the 
Lagrangian a concave functional (Luenberger 1969, Lemma 1 and its proof on p. 227). 
The following observation will allow us to establish the Lagrangian’s concavity.

LEMMA A.3: Suppose ​K : ​[0, 1]​  →  ℝ​ is right continuous and increasing and  
​h : ​ℝ​​ 2​  →  ℝ​ is bounded, measurable, and for each value of its second argu-
ment concave in its first argument. Then ​S : ​L​​ ∞​  →  ℝ​ defined by ​S​(α)​  ≔  
​∫ 0​ 1​​h​(α​(v)​, v)​ dK​(v)​​ is concave.

PROOF: 
Fix ​​α​1​​, ​α​2​​  ∈  ​L​​ ∞​​, ​c  ∈  ​(0, 1)​​ and let ​​α​c​​  ≔  c ​α​1​​ + ​(1 − c)​ ​α​2​​​. Then

	​ S​(​α​c​​)​ − cS​(​α​1​​)​ − ​(1 − c)​S​(​α​2​​)​ 

	   =  ​∫ 
0
​ 
1
​​​(h​(​α​c​​​(v)​, v)​ − ch​(​α​1​​​(v)​, v)​ − ​(1 − c)​h​(​α​2​​​(v)​, v)​)​ dK​(v)​  ≥  0​

34 That is, there is some delegation set ​A​ such that ​​α​​ ⁎​​(v)​​ is an action in ​A ∪ ​{0}​​ that type ​v​ prefers the most.
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because concavity of ​h​ implies that the integrand is positive for each ​v​ and because ​
K​ is increasing. ∎

Note that for each ​v​, ​u​(α​(v)​)​ f ​(v)​ + κ f ​(v)​​(α ​​(v)​​​ 2​/2)​​ is concave in ​α​(v)​​ since its 

second derivative is given by ​f ​(v)​​[u″​(α​(v)​)​ + κ]​​, which is negative by definition of ​
κ​. This implies that, for each ​v​, each of the three integrands in the expression after 
the equality in (A.1) is a concave function of ​α​(v)​​. Hence, if ​Λ​ is right continuous 
and increasing, Lemma A.3 implies that the Lagrangian ​​(α, Λ)​​ is concave in ​α​.

We will construct right continuous and increasing multipliers ​Λ​ that, for ease of 
calculations, also satisfy ​Λ​(1)​  =  κF​(1)​​. With this equality, (A.1) simplifies to

​​(α, Λ)​  =  ​∫ 
0
​ 
1
​​​(u​(α​(v)​)​ f ​(v)​ − α​(v)​​[κF​(v)​ − Λ​(v)​]​ − κ f ​(v)​​[vα​(v)​ − ​ 

α ​​(v)​​​ 2​
 _ 

2
  ​]​)​dv​

	​ + ​∫ 
0
​ 
1
​​​(vα​(v)​ − ​ 

α ​​(v)​​​ 2​
 _ 

2
  ​)​ dΛ​(v)​,​

and the Gateaux differential in the direction of mechanism ​​α – ​​ is

(A.2)	​ ∂ ​(α, ​α – ​, Λ)​  =  ​∫ 
0
​ 
1
​​​(​[u′​(α​(v)​)​ f ​(v)​ − κF​(v)​ + Λ​(v)​]​​α – ​​(v)​)​ dv 

	 + ​∫ 
0
​ 
1
​​​(​[v − α​(v)​]​​α – ​​(v)​)​ d​[Λ​(v)​ − κF​(v)​]​​

(A.3)	​ = ​∫ 
0
​ 
1
​​​(​∫ 

v
​ 
1
​​u′​(α​(x)​)​ f ​(x)​ − κF​(x)​ + Λ​(x)​ dx)​ d​α – ​​(v)​ 

	 + ​∫ 
0
​ 
1
​​​(​∫ 

v
​ 
1
​​​[x − α​(x)​]​ d​[Λ​(x)​ − κF​(x)​]​)​ d​α – ​​(v)​,​

where the second equality obtains using integration by parts.
Putting everything together, the sufficiency direction of each of Propositions 1, 

2, and 3 can now be proven by constructing a right continuous and increasing mul-
tiplier ​Λ​ such that ​Λ​(1)​  =  κF​(1)​​, and showing that for ​α​ induced by the rele-
vant delegation set and for all ​​α – ​  ∈  ​, the Gateaux differential in the direction of  
​​α – ​ − α​, computed using (A.2) or (A.3), is negative.

PROOF OF THE SUFFICIENCY PART OF PROPOSITION 1: 
The action rule induced by full delegation is ​α​(v)​  =  v​. We claim that ​α​ maxi-

mizes the Lagrangian for the multiplier ​Λ​(v)​  ≔  κF​(v)​ − u′​(v)​ f ​(v)​​ for ​v  <  1​ and ​
Λ​(1)​  ≔  κF​(1)​​. Note that the multiplier is increasing since ​κF​(v)​ − u′​(v)​ f ​(v)​​ is 
increasing by assumption and ​u′​(v)​  ≥  0​. The Lagrangian is therefore maximized at ​
α​ if ​∂ ​(α, ​α – ​ − α, Λ)​  ≤  0​ for all ​​α – ​  ∈  ​. Note that the integrand of the first inte-
gral in (A.2) is 0 for almost every ​v​ by choice of ​Λ​ and the second integral is 0 since  
​α​(v)​  =  v​. ∎

We next consider the optimality of no compromise.
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PROOF OF THE SUFFICIENCY PART OF PROPOSITION 2: 
The action rule induced by no compromise satisfies ​α​(v)​  =  0​ for ​v  ∈ ​ [0, 1 / 2)​​ 

and ​α​(v)​  =  1​ for ​v  ∈ ​ [1 / 2, 1]​​. Now suppose for all ​s  ∈  ​[0, 1 / 2)​​ and ​t  ∈ ​ (1 / 2, 1]​​ 
we have

	​​ (u′​(1)​ + κ​(1 − t)​)​ ​ 
F​(t)​ − F​(1 / 2)​

  _ 
t − 1 / 2

  ​  ≥ ​ (u′​(0)​ − κs)​ ​ 
F​(1 / 2)​ − F​(s)​

  ___________ 
1 / 2 − s

  ​,​

and let ​ψ  ≔ ​ inf​t∈​(1/2,1]​​​ ​(u′​(1)​ + κ​(1 − t)​)​ ​ 
F​(t)​ − F​(1 / 2)​  _ 

t − 1 / 2
  ​​. Define ​Λ​(v)​  ≔  

κF​(1 / 2)​ − ψ​ for ​v  ∈  ​[0, 1)​​ and ​Λ​(1)​  ≔  κF​(1)​​.
Let ​s  ∈  (1 / 2, 1]​. Integrating by parts, ​​∫ s​ 1/2​​v dF​(v)​  =  1 / 2F​(1 / 2)​ − sF​(s)​ − ​

∫ s​ 1/2​​F​(v)​ dv​. Since ​Λ​(v)​​ is constant on ​​[0, 1)​​, the definition of ​ψ​ implies that, for 
any ​s  ∈  ​[0, 1 / 2)​​,

(A.4)  ​​∫ 
s
​ 1/2​​u′​(α​(v)​)​ f ​(v)​ − κF​(v)​ + Λ​(v)​ dv + ​∫ 

s
​ 1/2​​v d​[Λ​(v)​ − κF​(v)​]​​

	​ =  u′​(0)​​[F​(1 / 2)​ − F​(s)​]​ − 1 / 2​[Λ​(1 / 2)​ − κF​(1 / 2)​]​ − s​[Λ​(s)​ − κF​(s)​]​​

	​ = ​ [u′​(0)​ + κs]​​[F​(1 / 2)​ − F​(s)​]​ − ​(1 / 2 − s)​ψ  ≤  0.​

Similarly, for any ​t  ∈ ​ (1 / 2, 1]​​,

(A.5)

​​∫ 1/2​ 
t
  ​​ u′​(α​(v)​)​ f ​(v)​ − κF​(v)​ + Λ​(v)​ dv + ​∫ 1/2​ 

t
  ​​​[v − α​(v)​]​ d​[Λ​(v)​ − κF​(v)​]​​

	​ =  u′​(1)​​[F​(t)​ − F​(1 / 2)​]​ + ​(t − 1)​​[Λ​(t)​ − κF​(t)​]​ + 1 / 2​[Λ​(1 / 2)​ − κF​(1 / 2)​]​​

	​ = ​ [u′​(1)​ + κ​(1 − t)​]​​[F​(t)​ − F​(1 / 2)​]​ − ​(t − 1 / 2)​ψ  ≥  0.​

Fix arbitrary ​​α – ​  ∈  ​ that satisfies ​​α – ​​(1)​  =  1​. It follows from (A.3) and the 
definition of ​α​ that

 ​ ∂ ​(α, ​α – ​ − α, Λ)​​ ​ =  ​∫ 
0
​ 
1
​​​[​∫ 

v
​ 
1
​​​(u′​(α​(x)​)​ f ​(x)​ − κF​(x)​ + Λ​(x)​)​ dx 

	 + ​∫ 
v
​ 
1
​​​(​[x − α​(x)​]​ d​[Λ​(x)​ − κF​(x)​]​)​]​ d​[​α – ​​(v)​ − α​(v)​]​​

	​ =  ​∫ 
0
​ 
1
​​​[​∫ 

v
​ 1/2​​​(u′​(α​(x)​)​ f ​(x)​ − κF​(x)​ + Λ​(x)​)​ dx 

	 + ​∫ 
v
​ 1/2​​​(​[x − α​(x)​]​ d​[Λ​(x)​ − κF​(x)​]​)​]​ d​α – ​​(v)​.​

Since ​​α – ​​ is increasing, (A.4) and (A.5) imply that ​∂ ​(α, ​α – ​ − α, Λ)​  ≤  0​. Since the 
optimal action rule chooses action 1 for type 1, and we have shown that changes in 
the direction of any allocation rule that assigns action 1 to type 1 is not an improve-
ment over ​α​, we conclude that ​α​ is optimal. ∎

Lastly, we consider optimality of interval delegation.
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PROOF OF THE SUFFICIENCY PART OF PROPOSITION 3: 
The action rule induced by interval delegation is ​α​(v)​  =  0​ for ​v  <  ​c​​ ⁎​ / 2​,  

​α​(v)​  =  ​c​​ ⁎​​ for ​​c​​ ⁎​ / 2  ≤  v  ≤  ​c​​ ⁎​​ and ​α​(v)​  =  v​ for ​v  >  ​c​​ ⁎​​. We propose the follow-
ing multiplier:

	​ Λ​(v)​  ≔ ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​

κF​(​c​​ ⁎​ / 2)​ − u′​(​c​​ ⁎​)​ ​ F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​  _ ​c​​ ⁎​ − ​c​​ ⁎​ / 2
  ​

​ 
if v  <  ​c​​ ⁎​

​    κF​(v)​ − u′​(v)​ f ​(v)​​  if  ​c​​ ⁎​  ≤  v  <  1​     

κF​(1)​
​ 

if v  =  1.

 ​​​

Note that ​Λ​ is constant on ​​[0, ​c​​ ⁎​)​​ and it follows from Proposition 3’s condition (i) that  
​Λ​ is increasing on ​​(​c​​ ⁎​, 1]​​. To see that ​Λ​ is increasing at ​​c​​ ⁎​​, note that condition (ii) 
holds as an equality for ​t  =  ​c​​ ⁎​​ and hence the derivative of the LHS of condition (ii) 
with respect to ​t​ must be negative at ​t  =  ​c​​ ⁎​​, which yields

	​ − κ ​ 
F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​

  _____________ ​c​​ ⁎​ / 2
  ​ + u′​(​c​​ ⁎​)​ ​ 

f ​(​c​​ ⁎​)​ ​c​​ ⁎​ / 2 − ​(F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​)​
   _______________________  

​​(​c​​ ⁎​ / 2)​​​ 2​
 ​   ≤  0.​

Hence, ​Λ​ is increasing at ​​c​​ ⁎​​. It is thus sufficient to show ​∂ ​(α, ​α – ​ − α, Λ)​  ≤  0​ for 
all ​​α – ​  ∈  ​.

Note that for ​v  ∈  ​[​c​​ ⁎​, 1]​​, ​v − α​(v)​  =  0​ and the definition of ​Λ​ implies that for ​
v  ∈ ​ [​c​​ ⁎​, 1)​​,

	​ u′​(α​(v)​)​ f ​(v)​ − κF​(v)​ + Λ​(v)​  =  0.​

Therefore,

 ​ ∂ ​(α, ​α – ​ − α, Λ)​  =  ​∫ 
0
​ ​c​​ 
⁎​​​​(​∫ 

v
​ ​c​​ 

⁎​​​u′​(α​(x)​)​ f ​(x)​ − κF​(x)​ + Λ​(x)​ ds)​ d​[​α – ​​(v)​ − α​(v)​]​​

	​ + ​∫ 
0
​ ​c​​ 
⁎​​​​(​∫ 

v
​ ​c​​ 

⁎​​​​[x − α​(x)​]​ d​[Λ​(x)​ − κF​(x)​]​)​ d​[​α – ​​(v)​ − α​(v)​]​​.

Since ​α​ is constant on ​​[0, ​c​​ ⁎​ / 2)​​ and ​​[​c​​ ⁎​ / 2, ​c​​ ⁎​]​​, ​​α – ​ − α​ is increasing on ​​[0, ​c​​ ⁎​ / 2)​​ 
and ​​[​c​​ ⁎​ / 2, ​c​​ ⁎​]​​. Hence, the following conditions are sufficient for ​α​ to maximize the 
Lagrangian:

	​​ ∫ 
t
​ ​c​​ 

⁎​​​​(u′​(​c​​ ⁎​)​ f ​(v)​ − ​[κF​(v)​ − Λ​(v)​]​)​ dv + ​∫ 
t
​ ​c​​ 

⁎​​​​(v − ​c​​ ⁎​)​ d​[Λ​(v)​ − κF​(v)​]​  ≤  0​

for ​t  ∈  ​[​c​​ ⁎​ / 2, ​c​​ ⁎​]​​, with equality at ​t  =  ​c​​ ⁎​ / 2​, and

	​​ ∫ 
s
​ ​c​​ 

⁎​/2​​​(​u ′ ​​(0)​ f ​(v)​ − ​[κF​(v)​ − Λ​(v)​]​)​ dv + ​∫ 
s
​ ​c​​ 

⁎​/2​​v d​[Λ​(v)​ − κF​(v)​]​  ≤  0​

for ​s  ∈  ​[0, ​c​​ ⁎​ / 2)​​.
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Note that ​​∫ t​ ​c​​ 
⁎​​​​(F​(v)​ + ​(v − ​c​​ ⁎​)​ f ​(v)​)​ dv  =  ​(​c​​ ⁎​ − t)​F​(t)​​ and ​Λ​ is constant on  

​​[0, ​c​​ ⁎​)​​. Hence, using the definition of ​Λ​, we get that for ​t  ∈  ​[​c​​ ⁎​ / 2, ​c​​ ⁎​]​​,

 ​ ​∫ 
t
​ ​c​​ 

⁎​​​​(u′​(​c​​ ⁎​)​ f ​(v)​ − ​[κF​(v)​ − Λ​(v)​]​)​ dx + ​∫ 
t
​ ​c​​ 

⁎​​​​(v − ​c​​ ⁎​)​ d​[Λ​(v)​ − κF​(v)​]​​

​    =  ​∫ 
t
​ ​c​​ 

⁎​​​​(u′​(​c​​ ⁎​)​ f ​(v)​ − ​[κF​(v)​ − κF​(​c​​ ⁎​ / 2)​ + ​  1 _ ​c​​ ⁎​ − ​c​​ ⁎​ / 2
 ​​∫ ​c​​ ⁎​/2​ 

​c​​ ⁎​ ​​  u′​(​c​​ ⁎​)​ dF​(x)​]​)​ dv

	 − κ​∫ 
t
​ ​c​​ 

⁎​​​​(v − ​c​​ ⁎​)​ dF​(v)​​

  ​  =  u′​(​c​​ ⁎​)​​[F​(​c​​ ⁎​)​ − F​(t)​]​ − u′​(​c​​ ⁎​)​​[F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​]​​  ​c​​ ⁎​ − t _ ​c​​ ⁎​ − ​c​​ ⁎​ / 2
 ​ 

	 + κ​(​c​​ ⁎​ − t)​​[F​(​c​​ ⁎​ / 2)​ − F​(t)​]​​

  ​  =  − ​[u′​(​c​​ ⁎​)​ + κ​(​c​​ ⁎​ − t)​]​​[F​(t)​ − F​(​c​​ ⁎​ / 2)​]​ 

	 + ​(t − ​c​​ ⁎​ / 2)​u′​(​c​​ ⁎​)​​ F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​
  _____________  ​c​​ ⁎​ − ​c​​ ⁎​ / 2

  ​​

  ​  ≤  0,​

where the inequality is by Proposition 3’s condition (ii), and holds with equality for ​
t  =  ​c​​ ⁎​ / 2​.

Analogously, note that ​​∫ s​ ​c​​ 
⁎​/2​​F​(v)​ + vf ​(v)​ dv  =  ​c​​ ⁎​ / 2F​(​c​​ ⁎​ / 2)​ − sF​(s)​​ and ​Λ​ is 

constant on ​​[0, ​c​​ ⁎​ / 2]​​. Hence, for ​s  ∈  ​[0, ​c​​ ⁎​ / 2]​​,

 ​ ​∫ 
s
​ ​c​​ 

⁎​/2​​​(u′​(0)​ f ​(v)​ − ​[κF​(v)​ − Λ​(v)​]​)​ dv + ​∫ 
s
​ ​c​​ 

⁎​/2​​v d​[Λ​(v)​ − κF​(v)​]​​

	​ =  u′​(0)​​[F​(​c​​ ⁎​ / 2)​ − F​(s)​]​ + Λ​(s)​​(​c​​ ⁎​ / 2 − s)​ − κ​[​c​​ ⁎​ / 2F​(​c​​ ⁎​ / 2)​ − sF​(s)​]​​

	​ = ​ [u′​(0)​ − κs]​​[F​(​c​​ ⁎​ / 2)​ − F​(s)​]​ − u′​(​c​​ ⁎​)​ ​ F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​
  _____________  ​c​​ ⁎​ − ​c​​ ⁎​ / 2

  ​ ​(​c​​ ⁎​ / 2 − s)​​

	​ ≤  0,​

where the inequality is by Proposition 3’s condition (iii). Hence, ​α​ is optimal. ∎

B. Necessary Conditions

LEMMA A.4: Suppose Condition LQ holds. If ​​α​​ ⁎​​ is deterministic and solves 
problem (P) then it also solves problem (R).

PROOF: 
The proof is by contraposition: assuming there exists ​α  ∈  ​ that is fea-

sible for (R) and achieves a strictly higher objective value in (R) than ​​α​​ ⁎​​, we 
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will construct a solution to (P) that achieves a strictly higher objective value  
than ​​α​​ ⁎​​.

CLAIM 1: There exists ​​α ̃ ​  ∈  ​ that is feasible for (R), satisfies ​​α ̃ ​​(v)​  ≤  1​ for all ​v​, ​
v​α ̃ ​​(v)​ − ​(​α ̃ ​ ​​(v)​​​ 2​/2)​ − ​∫ 0​ 

v​​​α ̃ ​​(s)​ ds  =  0​ for all ​v​ such that ​​α ̃ ​​(v)​  =  1​, and achieves a 
weakly higher objective value in problem (R) than ​α​.

We can assume ​α​(v)​  ≤  1​ since ​u​ is decreasing above ​1​. Now suppose instead that ​
vα​(v)​ − ​(α ​​(v)​​​ 2​/2)​ − ​∫ 0​ 

v​​α​(s)​ ds  >  0​ for some ​v​ such that ​α​(v)​  =  1​. Consider an 
auxiliary setting in which a principal chooses a pair of functions ​​(α, t)​​ and an agent 
with type ​v​ gets utility ​vα​(v)​ − ​(α ​​(v)​​​ 2​/2)​ − t​(v)​​. Since ​α​ is monotonic, it follows 
from standard arguments that there exist transfers ​t : ​[0, 1]​  →  ℝ​ such that ​​(α, t)​​ is 
incentive compatible in the auxiliary setting (e.g., Amador and Bagwell 2013). For 
all ​v​, these transfers satisfy ​t​(v)​ − t​(0)​  =  vα​(v)​ − ​(α ​​(v)​​​ 2​/2)​ − ​∫ 0​ 

v​​α​(s)​ ds  ≥  0​, 
where the inequality holds because ​α​ is feasible for (R). Define ​​(​α ̃ ​, ​t ̃ ​)​​ by setting  
​​(​α ̃ ​​(v)​, ​t ̃ ​​(v)​)​  =  ​(α​(v)​, t​(v)​)​​ or ​​(​α ̃ ​​(v)​, ​t ̃ ​​(v)​)​  =  ​(1, t​(0)​)​​, whichever gives an agent 
with type ​v​ higher expected utility (and choosing the latter if type ​v​ is indifferent). 
Note that ​​t ̃ ​​(0)​  =  t​(0)​​, which together with ​t​(v)​  ≥  t​(0)​​ implies ​​t ̃ ​​(v)​ − ​t ̃ ​​(0)​  ≥  0​, 
with equality for any ​v​ such that ​​α ̃ ​​(v)​  =  1​.

Observe that ​​(​α ̃ ​, ​t ̃ ​)​​ corresponds to an incentive compatible direct mechanism: 
indeed, if type ​v​ strictly prefers ​​(​α ̃ ​​(v′)​, ​t ̃ ​​(v′)​)​​ to ​​(​α ̃ ​​(v)​, ​t ̃ ​​(v)​)​​ then ​v​ also strictly 
prefers ​​(α​(v′)​, t​(v′)​)​​ to ​​(α​(v)​, t​(v)​)​​, contradicting the assumption that ​​(α, t)​​ is 
incentive compatible. It follows from the standard characterization of incentive 
compatible mechanisms that ​​α ̃ ​​ is increasing, and

	​ v​α ̃ ​​(v)​ − ​ 
​α ̃ ​ ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​​α ̃ ​​(s)​ ds  =  ​t ̃ ​​(v)​ − ​t ̃ ​​(0)​  ≥  0,​

with the inequality holding as equality for ​v​ such that ​​α ̃ ​​(v)​  =  1​.
Finally, note that ​α​(v)​  ≤  ​α ̃ ​​(v)​  ≤  1​ for all ​v​. Also, ​​t ̃ ​​(v)​ − ​t ̃ ​​(0)​  ≤  t​(v)​ − t​(0)​​, 

which implies

	​ v​α ̃ ​​(v)​ − ​ 
​α ̃ ​ ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​​α ̃ ​​(s)​ ds  ≤  vα​(v)​ − ​ 

α ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​α​(s)​ ds.​

It follows that ​​α ̃ ​​ achieves a weakly higher objective value in problem (R). 

CLAIM 2: Let ​​α ̃ ​  ∈  ​ be feasible for (R) and satisfy ​​α ̃ ​​(v)​  ≤  1​ and  
​v​α ̃ ​​(v)​ − ​α ̃ ​ ​​(v)​​​ 2​ / 2 − ​∫ 0​ 

v​​​α ̃ ​​(s)​ ds  =  0​ for all ​v​ such that ​​α ̃ ​​(v)​  =  1​. There is a sto-
chastic mechanism ​m​ such that, for all ​v​, ​​Pr​m​(v)​​​​(a  ≤  1)​  =  1​, ​​E​ m​(v)​​​​[a]​  =  ​α ̃ ​​(v)​​, and ​​
E​ m​(v)​​​​[va − ​a​​ 2​/2]​ − ​∫ 0​ 

v​​​E​ m​(s)​​​​[a]​ ds  =  0​.

Intuitively, this is because Vetoer’s utility function is quadratic and we can use 
noise as a substitute for transfers. We provide an explicit construction of the mech-
anism ​m​ below.
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For any ​v​ such that ​​α ̃ ​​(v)​  =  1​, define ​m​(v)​​ to put mass 1 on action 1. Now 
fix arbitrary ​v​ such that ​​α ̃ ​​(v)​  <  1​ and arbitrary ​d  ∈ ​ (− ∞, 0]​​ and let ​​t​ 1​​​(d)​  
=  (1 − ​α ̃ ​(v))/(1 − d)​ . Then ​​t​ 1​​​(d)​d + ​(1 − ​t​ 1​​​(d)​)​1  =  ​α ̃ ​​(v)​​ for all ​d​. Moreover, for 
any ​r  ∈  ℝ​ we can choose ​d  ∈ ​ (− ∞, 0]​​ small enough such that

	​ − ​ 
1 − ​α ̃ ​​(v)​
 _ 

1 − d
  ​ ​d​​ 2​ − ​(1 − ​ 

1 − ​α ̃ ​​(v)​
 _ 

1 − d
  ​)​  ≤  r​

because the LHS ​→  − ∞​ as ​d  →  − ∞​. Hence, by choosing ​d​ small enough  
we get

	​ v​α ̃ ​​(v)​ − ​t​ 1​​​(d)​ ​ ​d​​ 2​ _ 
2
 ​ − ​(1 − ​t​ 1​​​(d)​)​ ​ 1 _ 

2
 ​ − ​∫ 

0
​ 
v
​​​α ̃ ​​(s)​ ds  ≤  0.​

Given ​v  ∈  ​[0, 1]​​ and ​​t​ 2​​  ∈  ​[0, 1]​​, we define ​m​(v)​​ to put probability ​​t​ 2​​​ on action  
​​α ̃ ​​(v)​​, probability ​​(1 − ​t​ 2​​)​ ​t​ 1​​​(d)​​ on action ​d​, and probability ​​(1 − ​t​ 2​​)​​(1 − ​t​ 1​​​(d)​)​​  
on action ​1​. It follows from the above that ​m​(v)​​ satisfies ​​E​ m​(v)​​​​[a]​  =  ​α ̃ ​​(v)​​,  
​​Pr​m​(v)​​​​(a  ≤  1)​  =  1​, and we can choose ​​t​ 2​​  ∈  ​[0, 1]​​ such that

	​ ​E​ m​(v)​​​​[va − ​ ​a​​ 2​ _ 
2
 ​]​ − ​∫ 

0
​ 
v
​​​E​ m​(s)​​​​[a]​ ds  =  0.​

Defining ​m​(v)​​ in this way for all ​v​ such that ​​α ̃ ​​(v)​  <  1​, the claim follows. 

For the mechanism ​​α ̃ ​​ identified in Claim 1, it holds that

(A.6) ​ ​∫ 
0
​ 
1
​​u​(​α​​ ⁎​​(v)​)​ dF​(v)​ 

	 =  ​∫ 
0
​ 
1
​​​(u​(​α​​ ⁎​​(v)​)​ − κ​[v​α​​ ⁎​​(v)​ − ​ 

​α​​ ⁎​ ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​​α​​ ⁎​​(s)​ ds]​)​ dF​(v)​​

	​ <  ​∫ 
0
​ 
1
​​​(u​(α​(v)​)​ − κ​[vα​(v)​ − ​ 

α ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​α​(s)​ ds]​)​ dF​(v)​​

	​ ≤  ​∫ 
0
​ 
1
​​​(u​(​α ̃ ​​(v)​)​ − κ​[v​α ̃ ​​(v)​ − ​ 

​α ̃ ​ ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​​α ̃ ​​(s)​ ds]​)​ dF​(v)​​,

where the equality holds because ​​α​​ ⁎​​ is feasible for (P), the first inequality holds 
because we assume that ​α​ achieves a strictly higher value than ​​α​​ ⁎​​, and the second 
inequality holds by Claim 1.

Under Condition LQ, ​κ  ≡  ​inf​v∈​[0,1)​​​ −u′′​(v)​  =  2γ​. Hence, for any ​a, b  ≤  1​ and ​
λ  ∈  ​[0, 1]​​, some algebra shows that

	​ u​(λa + ​(1 − λ)​b)​ + κ ​ 
​​[λa + ​(1 − λ)​b]​​​ 

2​
  _____________ 

2
  ​ 

	 =  λ​[u​(a)​ + κ ​ ​a​​ 2​ _ 
2
 ​]​ + ​(1 − λ)​​[u​(b)​ + κ ​ ​b​​ 2​ _ 

2
 ​]​.​
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Since the mechanism m identified in Claim 2 satisfies ​​Pr​m​(v)​​​​(a  ≤  1)​  =  1​ and 
​​E​ m​(v)​​​​[a]​  =  ​α ̃ ​​(v)​​ for all ​v​, the last expression in (A.6) equals

	​ ​∫ 
0
​ 
1
​​​(​E​ m​(v)​​​​[u​(a)​ − κ​(va − ​ ​a​​ 2​ _ 

2
 ​)​]​ + κ​∫ 

0
​ 
v
​​​E​ m​(s)​​​​[a]​ ds)​ dF​(v)​.​

Since ​m​ is feasible for (P) by Claim 2, this expression equals ​​∫ 0​ 1​​​E​ m​(v)​​​​[u​(a)​]​dF​(v)​​. 
This contradicts the assumption that ​​α​​ ⁎​​ solves (P), and we conclude that ​​α​​ ⁎​​ solves 
(R). ∎

Recall that ​Obj​(α)​​ denotes the value of the objective function in problem (R) 
with mechanism ​α​. The set of feasible solutions for (R) is convex, and optimality 
of ​α​ therefore implies ​∂ Obj​(α, ​α – ​ − α)​  ≤  0​ for any ​​α – ​  ∈  ​ that is feasible for (R) 
(Luenberger 1969, Theorem 2 on p. 178). Recall the assumption ​F​(1)​  =  1​. We have

	​ Obj​(α)​  =  ​∫ 
0
​ 
1
​​​(u​(α​(v)​)​ − κ​[vα​(v)​ − ​ 

α ​​(v)​​​ 2​
 _ 

2
  ​ − ​∫ 

0
​ 
v
​​α​(s)​ ds]​)​ dF​(v)​,​ and

(A.7) ​ ∂ Obj​(α, ​α – ​ − α)​ 

	 =  ​∫ 
0
​ 
1
​​​(​[u′​(α​(v)​)​ − κ​[v − α​(v)​]​]​​(​α – ​​(v)​ − α​(v)​)​ + κ​∫ 

0
​ 
v
​​​α – ​​(s)​ − α​(s)​ds)​dF​(v)​​

	​ =  ​∫ 
0
​ 
1
​​​[u′​(α​(v)​)​ − κ​[v − α​(v)​ − ​ 

1 − F​(v)​
 _ 

f​(v)​ ​ ]​]​​(​α – ​​(v)​ − α​(v)​)​ dF​(v)​.​

LEMMA A.5: Suppose Condition LQ holds. If a delegation set containing the inter-
val ​​[a, b]​  ⊆  ​[0, 1]​​ is optimal, then ​κF​(v)​ − ​u ′ ​​(v)​f​(v)​​ is increasing on ​​[a, b]​​.

PROOF: 
Suppose a delegation set containing the interval ​​[a, b]​​ is optimal, and let ​α​ denote 

the corresponding allocation rule. Suppose to the contrary that ​κF​(v)​ − u′​(v)​ f ​(v)​​  
is not increasing on ​​[a, b]​​; since ​κF​(v)​ − u′​(v)​ f ​(v)​​ is continuously differen-
tiable, there is then an interval ​​[d, e]​  ⊂  ​[a, b]​​ with ​d  <  e​ on which it is strictly  
decreasing.

Set

	​​ α – ​​(v)​  ≔ ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​

α​(v)​
​ 

for v  ∉  ​[d, e]​
​  d​  for v  ∈ ​ [d, ​ d + e ____ 2 ​ )​​   

e

​ 

for v  ∈ ​ [​ d + e ____ 2 ​ , e]​

 ​​​

and observe that ​​α – ​​ is feasible for (R), since it is corresponds to a delegation set 
obtained by removing ​​(d, e)​​ from the original delegation set. Moreover,

	​ ∂ Obj​(α, ​α – ​ − α)​  =  ​∫ 
d
​ 
e
​​​[u′​(v)​ f ​(v)​ − κF​(v)​ + κ]​​[​α – ​​(v)​ − v]​dv​

	​ >  ​∫ 
d
​ 
e
​​​[u′​(​ d + e _ 

2
  ​)​ f ​(​ d + e _ 

2
  ​)​ − κF​(​ d + e _ 

2
  ​)​ + κ]​​[​α – ​​(v)​ − v]​dv​

	​ =  0,​
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where the first equality follows from (A.7) because ​​α – ​​(v)​  =  α​(v)​​ for ​v  ∉  ​[d, e]​​ and ​
α​(v)​  =  v​ for ​v  ∈  ​[d, e]​​; the inequality holds because ​u′​(v)​ f ​(v)​ − κF​(v)​​ is strictly 
increasing on ​​[d, e]​​ while ​​α – ​​(v)​ − v​ is strictly negative on ​​(d, (d + e)/2)​​ and strictly 
positive on ​​((d + e)/2, e)​​; and the final equality holds because ​​∫ d​ 

e​​​[​α – ​​(v)​ − v]​dv  =  0​. 
We conclude that ​α​ is not optimal. ∎

PROOF OF THE NECESSITY PART OF PROPOSITION 1: 
Suppose Condition LQ holds. The result follows directly from Lemma A.5. ∎

PROOF OF THE NECESSITY PART OF PROPOSITION 2: 
Suppose Condition LQ holds and let ​α  ∈  ​ be the action rule induced by the 

delegation set ​​{0, 1}​​. Fix ​s  ∈  ​(0, 1 / 2)​​ and ​t  ∈  ​(1 / 2, 1)​​, ​ε  ∈  ​(0, 1)​​ and define

	​​​ α – ​​ε​​​(v)​  ≔ ​

⎧

 
⎪

 ⎨ 

⎪
 

⎩

​

0

​ 

if v  ∈  ​[0, s)​

​   
ε
​ 

if v  ∈  ​[s, 1 / 2)​
​   

1 − ​ 1 / 2 − s
 _ 

t − 1 / 2
 ​ ε

​ 
if v  ∈  ​[1 / 2, t]​​   

1

​ 

if v  ∈  ​(t, 1​].

 ​​​

We claim that for any ​ε  >  0​ small enough (so that ​ε  <  min​{s, ​ t − 1 / 2
 _ t − s  ​}​​ and  

​ε  <  ​(1 − t)​ ​ t − 1 / 2
 _ 

1 / 2 − s
 ​​), ​​​α – ​​ε​​​ is feasible for (R). By definition of ​​​α – ​​ε​​​, ​​∫ 0​ 

v​​​​α – ​​ε​​​(s)​ ds  

= ​ ∫ 0​ 
v​​α​(s)​ ds​ for all ​v  ∉  ​(s, t)​​. Combining this equality with ​α​ being feasible for (R) 

and ​​​α – ​​ε​​​(v)​  =  α​(v)​​ for all ​v  ∉  ​[s, t]​​, it follows that

(A.8)	​ v ​​α – ​​ε​​​(v)​ − ​ 
​​[​​α – ​​ε​​​(v)​]​​​ 2​

 ______ 
2
 ​  − ​∫ 

0
​ 
v
​​​​α – ​​ε​​​(s)​ ds  ≥  0​

for all ​v  ∉  ​[s, t]​​. Inequality (A.8) is also satisfied for ​v  =  s​ because type ​s​ prefers 
action ​ε​ over action ​0​ (so ignoring the integral term, the LHS of (A.8) is larger 
under ​​​α – ​​ε​​​ than under ​α​; whereas the integral term is equal under both mechanisms). 
Since ​​​α – ​​ε​​​ is constant on ​​[s, 1 / 2)​​, it follows that (A.8) is satisfied on this interval. 
Moreover, (A.8) is satisfied for ​v  =  t​ (using the fact that type ​t​ prefers action  

​​​α – ​​ε​​​(t)​  =  1 − ​ 1 / 2 − s
 _ 

t − 1 / 2
 ​ ε​ to action ​α​(t)​  =  1​) and therefore for all ​v  ∈  ​[1 / 2, t]​​. 

Since ​​​α – ​​ε​​​ is increasing, we conclude that ​​​α – ​​ε​​​ is feasible for (R).

Therefore, if ​α​ is optimal then ​∂ Obj​(α, ​​α – ​​ε​​ − α)​  ≤  0​. Note that

	​ ​∫ 
s
​ 1/2​​​[v − ​ 

1 − F​(v)​
 _ 

f​(v)​ ​ ]​ dF​(v)​  =  s​[1 − F​(s)​]​ − 1 / 2​[1 − F​(1 / 2)​]​, ​

​and​

	​ ​∫ 1/2​ 
t
  ​​​[v − 1 − ​ 

1 − F​(v)​
 _ 

f​(v)​ ​ ]​ dF​(v)​  =  F​(t)​​(t − 1)​ − F​(1 / 2)​​(1 / 2 − 1)​ − t + 1 / 2.​



4083KARTIK ET AL.: DELEGATION IN VETO BARGAININGVOL. 111 NO. 12

It follows that

 ​ ∂ Obj​(α, ​​α – ​​ε​​ − α)​  =  ε​∫ 
s
​ 1/2​​​(u′​(0)​ − κ​[v − ​ 

1 − F​(v)​
 _ 

f ​(v)​ ​ ]​)​ dF​(v)​​

	​ − ​ 1 / 2 − s
 _ 

t − 1 / 2
 ​ε​∫ 1/2​ 

t
  ​​​(u′​(1)​ − κ​[v − 1 − ​ 

1 − F​(v)​
 _ 

f ​(v)​ ​ ]​)​ dF​(v)​​

	​ =  ε​(1 / 2 − s)​​(​[​u ′ ​​(0)​ − κs]​​ 
F​(1 / 2)​ − F​(s)​

  ___________ 
1 / 2 − s

  ​ + κ​[1 − F​(1 / 2)​]​)​​

	​ −  ε​ 1 / 2 − s
 _ 

t − 1 / 2
 ​​(​[​u ′ ​​(1)​ + κ​(1 − t)​]​​(F​(t)​ − F​(1 / 2)​)​ 

	 + κ​[​(1 / 2 − t)​F​(1 / 2)​ + t − 1 / 2]​)​​

	​ =  ε​(1 / 2 − s)​​(​[u′​(0)​ − κs]​​ 
F​(1 / 2)​ − F​(s)​

  ___________ 
1 / 2 − s

  ​ 

	 − ​[u′​(1)​ + κ​(1 − t)​]​​ 
F​(t)​ − F​(1 / 2)​

  _ 
t − 1 / 2

  ​)​.​

Therefore, ​∂ Obj​(α, ​​α – ​​ε​​ − α)​  ≤  0​ for all ​ε  >  0, s  ∈  ​[0, 1 / 2)​​, and ​t  ∈  ​(1 / 2, 1)​​ 
implies that the condition in Proposition 2 holds. ∎

PROOF OF THE NECESSITY PART OF PROPOSITION 3: 
Suppose Condition LQ holds and ​​c​​ ⁎​  ∈  ​(0, 1)​​. Let ​α  ∈  ​ be the action rule 

induced by the delegation set ​​[​c​​ ⁎​, 1]​​. We prove necessity of each condition in 
Proposition 3 in order.

CONDITION (i): �This follows from Lemma A.5.

CONDITION (ii): Fix ​t  ∈  ​(​c​​ ⁎​ / 2, ​c​​ ⁎​)​​ and ​ε  >  0​. Let ​​a –​​(ε)​​ be the positive value of ​
a​ that solves ​​(​c​​ ⁎​ − t)​a + ​a​​ 2​ / 2  =  ε​(t − ​c​​ ⁎​ / 2)​​, and define ​​​α – ​​ε​​​ by

	​​​ α – ​​ε​​​(v)​  ≔ ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩
​

α​(v)​
​ 

if v  ∉ ​ [​c​​ ⁎​ / 2, ​c​​ ⁎​ + ​a –​​(ε)​]​
​    ​c​​ ⁎​ − ε​  if v  ∈  ​[​c​​ ⁎​ / 2, t)​​   

​c​​ ⁎​ + ​a –​​(ε)​
​ 
if v  ∈ ​ [t, ​c​​ ⁎​ + ​a –​​(ε)​]​.

 ​​​

We claim that for any ​ε  >  0​ small enough (so that ​​c​​ ⁎​ − ε  >  ​c​​ ⁎​ / 2​ and  
​​c​​ ⁎​ + ​a –​​(ε)​  <  1​), ​​​α – ​​ε​​​ is feasible for (R). By definition of ​​a –​​(ε)​​, ​​∫ 0​ 

v​​​​α – ​​ε​​​(s)​ ds  
= ​ ∫ 0​ 

v​​α​(s)​ds​ for all ​v  ∉ ​ (​c​​ ⁎​ / 2, ​c​​ ⁎​ + ​a –​​(ε)​)​​. Combining this equality with ​α​ being 
feasible for (R) and ​​​α – ​​ε​​​(v)​  =  α​(v)​​ for all ​v  ∉ ​ [​c​​ ⁎​ / 2, ​c​​ ⁎​ + ​a –​​(ε)​]​​, it follows that

(A.9)	​ v ​​α – ​​ε​​​(v)​ − ​ 
​​[​​α – ​​ε​​​(v)​]​​​ 

2
​
 ______ 

2
 ​  − ​∫ 

0
​ 
v
​​​​α – ​​ε​​​(s)​ ds  ≥  0​
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for all ​v  ∉ ​ [​c​​ ⁎​ / 2, ​c​​ ⁎​ + ​a –​​(ε)​]​​. Inequality (A.9) is also satisfied for ​v  =  ​c​​ ⁎​ / 2​ 
because type ​​c​​ ⁎​ / 2​ prefers action ​​c​​ ⁎​ − ε​ over action ​​c​​ ⁎​​ (so ignoring the integral 
term, the LHS of (A.9) is larger under ​​​α – ​​ε​​​ than under ​α​; whereas the integral term is 
equal under both mechanisms). Since ​​​α – ​​ε​​​ is constant on ​​[​c​​ ⁎​ / 2, t)​​, it follows that (A.9) 
is satisfied on this interval. Moreover, (A.9) is satisfied for ​v  =  ​c​​ ⁎​ + ​a –​​(ε)​​ (since ​​​α – ​​ε​​​ 
and ​α​ coincide at this point) and therefore for all ​v  ∈ ​ [t, ​c​​ ⁎​ + ​a –​​(ε)​]​​. Since ​​​α – ​​ε​​​ is 
increasing, we conclude that ​​​α – ​​ε​​​ is feasible for (R).

Therefore, if ​α​ is optimal then ​∂ Obj​(α, ​​α – ​​ε​​ − α)​  ≤  0​. Note that

​∂ Obj​(α, ​​α – ​​ε​​ − α)​ = − ε​∫ ​c​​ ⁎​/2​ 
t
  ​​​(u′​(α​(v)​)​ f ​(v)​ − κ f ​(v)​​[v − ​c​​ ⁎​ − ​ 

1 − F​(v)​
 _ 

f​(v)​ ​ ]​)​dv​

	​ + ​a –​​(ε)​​∫ 
t
​ ​c​​ 

⁎​​​​(u′ ​(α​(v)​)​ f ​(v)​ − κ f ​(v)​​[v − ​c​​ ⁎​ − ​ 
1 − F​(v)​
 _ 

f ​(v)​ ​ ]​)​dv​

�​ +  ​∫ 
​c​​ ⁎​
​ ​c​​ 
⁎​+​a –​​(ε)​​​​(​c​​ ⁎​ + ​a –​​(ε)​ − v)​​(u′​(α​(v)​)​ f ​(v)​ − κ f ​(v)​​[− ​ 

1 − F​(v)​
 _ 

f ​(v)​ ​ ]​)​dv.​

By the implicit function theorem, ​​lim​ε→0​​ ​a –​​(ε)​/ε  = ​ (t − ​c​​ ⁎​ / 2)​/​(​c​​ ⁎​ − t)​​. It fol-
lows that the last integral is of order ​o​(ε)​​. Also, integration by parts implies that for  
​x, y  ∈  ℝ​, ​​ ∫ x​ 

y​​​( f ​(v)​​(v − ​c​​ ⁎​)​ − ​[1 − F​(v)​]​)​dv  =  F​(y)​​(y − ​c​​ ⁎​)​ − F​(x)​​(x − ​c​​ ⁎​)​ − 
y + x​. We conclude

​​ lim​ 
ε→​0​+​​

​​ ​ 
∂ Obj​(α, ​​α – ​​ε​​ − α)​  ____________ ε ​  

  =  − u′​(​c​​ ⁎​)​​[F​(t)​ − F​(​c​​ ⁎​ / 2)​]​ + κ​[F​(t)​​(t − ​c​​ ⁎​)​ + F​(​c​​ ⁎​ / 2)​​(​c​​ ⁎​ − ​c​​ ⁎​ / 2)​ − t + ​c​​ ⁎​ / 2]​​

	​ + ​ t − ​c​​ ⁎​ / 2
 _ ​c​​ ⁎​ − t

  ​​[u′​(​c​​ ⁎​)​​(F​(​c​​ ⁎​)​ − F​(t)​)​ − κ​(​c​​ ⁎​ − t)​​(F​(t)​ − 1)​]​​

	​ =  − ​ ​c​​ 
⁎​ − ​c​​ ⁎​ / 2

 _ ​c​​ ⁎​ − t
  ​u′​(​c​​ ⁎​)​​[F​(t)​ − F​(​c​​ ⁎​ / 2)​]​ 

	 + κ​(​c​​ ⁎​ − ​c​​ ⁎​ / 2)​​[F​(​c​​ ⁎​ / 2)​ − F​(t)​]​​ ​+ ​ t − ​c​​ ⁎​ / 2
 _ ​c​​ ⁎​ − t

  ​​u ′ ​​(​c​​ ⁎​)​​(F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​)​​

	​ =  ​ 
​(​c​​ ⁎​ − ​c​​ ⁎​ / 2)​​(t − ​c​​ ⁎​ / 2)​

  _________________  ​c​​ ⁎​ − t
  ​​​​{− ​[​u ′ ​​(​c​​ ⁎​)​ + κ​(​c​​ ⁎​ − t)​]​​ 

F​(t)​ − F​(​c​​ ⁎​ / 2)​
  ___________  

t − ​c​​ ⁎​ / 2
  ​ 

	 + ​u ′ ​​(​c​​ ⁎​)​​ F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​
  _____________  ​c​​ ⁎​ − ​c​​ ⁎​ / 2

  ​}​.​

Since ​∂ Obj​(α, ​​α – ​​ε​​ − α)​  ≤  0​ for all ​ε  >  0​, the last expression is negative for all  
​t  ∈  ​(​c​​ ⁎​ / 2, ​c​​ ⁎​)​​, which implies condition (ii).
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CONDITION (iii): Fix ​s  ∈  ​[0, ​c​​ ⁎​ / 2)​​ and ​ε  >  0​. Let ​​a –​​(ε)​​ be the positive value of ​
a​ that solves ​​(​c​​ ⁎​ − ​c​​ ⁎​ / 2)​a − ​a​​ 2​  =  ​(​c​​ ⁎​ / 2 − s)​ε​, which is well-defined for ​ε​ small 
enough, and define

	​​​ α – ​​ε​​​(v)​  ≔ ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​

0

​ 

for v  <  s

​  
ε
​ 

if v  ∈  ​[s, ​c​​ ⁎​ / 2)​
​   ​c​​ ⁎​ − ​a –​​(ε)​​  if v  ∈ ​ [​c​​ ⁎​ / 2, ​c​​ ⁎​ − ​a –​​(ε)​)​​    

v

​ 

if v  ≥  ​c​​ ⁎​ − ​a –​​(ε)​.

 ​​​

Arguments similar to the ones above used for Condition (ii) imply that ​​​α – ​​ε​​​ is feasible 
for (R). Also, note that ​​lim​ε→0​​ ​a –​​(ε)​/ε  = ​ (​c​​ ⁎​ / 2 − s)​/​(​c​​ ⁎​ − ​c​​ ⁎​ / 2)​​.

It follows from (A.7) that

​∂ Obj​(α, ​​α – ​​ε​​ − α)​  =  ε​[​∫ 
s
​ ​c​​ 

⁎​/2​​u′​(α​(v)​)​ − κ​[v − ​ 
1 − F​(v)​
 _ 

f ​(v)​ ​ ]​dF​(v)​]​​

�​ − ​a –​​(ε)​​[​∫ ​c​​ ⁎​/2​ 
​c​​ ⁎​ ​​ u′​(α​(v)​)​ − κ​[v − ​c​​ ⁎​ − ​ 

1 − F​(v)​
 _ 

f ​(v)​ ​ ]​dF​(v)​]​ + o​(ε)​.​

Using integration by parts, we conclude

​​ lim​ 
ε→​0​+​​

​​ ​ 
∂ Obj​(α, ​​α – ​​ε​​ − α)​  ____________ ε ​  

	 =   u′​(0)​​[F​(​c​​ ⁎​ / 2)​ − F​(s)​]​ − κ​[​c​​ ⁎​ / 2F​(​c​​ ⁎​ / 2)​ − sF​(s)​ − ​c​​ ⁎​ / 2 + s]​​

​	 − ​ ​c​​ 
⁎​ / 2 − s

 _ ​c​​ ⁎​ − ​c​​ ⁎​ / 2
 ​​[u′​(​c​​ ⁎​)​​[F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​]​ + κ​(​c​​ ⁎​ − ​c​​ ⁎​ / 2)​​[1 − F​(​c​​ ⁎​ / 2)​]​]​​

	​ =  ​(​c​​ ⁎​ / 2 − s)​​{​[u′​(0)​ − κs]​ ​ 
F​(​c​​ ⁎​ / 2)​ − F​(s)​

  ____________  ​c​​ ⁎​ / 2 − s
  ​ − u′​(​c​​ ⁎​)​ ​ F​(​c​​ ⁎​)​ − F​(​c​​ ⁎​ / 2)​

  _____________  ​c​​ ⁎​ − ​c​​ ⁎​ / 2
  ​}​  ≤  0,​

which yields condition (iii). ∎
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