Online Appendices

for

Delegation in Veto Bargaining

Navin Kartik* Andreas Kleiner ${ }^{\dagger} \quad$ Richard Van Weelden ${ }^{\ddagger}$

August 10, 2021

[^0]The in-print appendix of the paper is Appendix A; hence, this document begins with Appendix B. For convenience, we recall:

Condition LQ. For some $\gamma \in[0,1], u(a)=-(1-\gamma)|1-a|-\gamma(1-a)^{2}$.

B. Proofs of Corollaries 1, 2, and 3

B.1. Proof of Corollary 1

Since u is concave, u^{\prime} is decreasing on $[0,1]$. Recall $\kappa \geq 0$. Hence, if the type density f is decreasing on $[0,1]$, then $\kappa F-u^{\prime} f$ is increasing on $[0,1]$. The result follows from Proposition 1.

B.2. Proof of Corollary 2

As $\kappa F(v)-u^{\prime}(v) f(v)$ is continuous on $[0,1]$, it is increasing on $[0,1]$ if its derivative is positive for all $v \in[0,1)$. The derivative is $\left(\kappa-u^{\prime \prime}(v)\right) f(v)-u^{\prime}(v) f^{\prime}(v)$, which is larger than $-u^{\prime \prime}(v) f(v)-u^{\prime}(v) f^{\prime}(v)$. The latter function is positive for all $v \in[0,1)$ if

$$
\inf _{v \in[0,1)} \frac{-u^{\prime \prime}(v)}{u^{\prime}(v)} \geq \sup _{v \in[0,1)} \frac{f^{\prime}(v)}{f(v)}
$$

The RHS above is finite since f is continuously differentiable and strictly positive on $[0,1]$. Therefore, $\kappa F(v)-u^{\prime}(v) f(v)$ is increasing on $[0,1]$ when the LHS above is sufficiently large. The result follows from Proposition 1.

B.3. Proof of Corollary 3

Assume Condition LQ. We prove the result by establishing that (i) logconcavity of f on $[0,1]$ ensures that the conditions of either Proposition 2 or Proposition 3 are satisfied, and (ii) if $\gamma>0$ (equivalently, given Condition LQ, u is strictly concave) or f is strictly logconcave on $[0,1]$, then among interval delegation sets there is a unique optimum.

As introduced in Section 4, Proposer's expected utility from delegating the interval $[c, 1]$ with $c \in[0,1]$ is:

$$
\begin{equation*}
W(c) \equiv u(0) F(c / 2)+u(c)(F(c)-F(c / 2))+\int_{c}^{1} u(v) f(v) \mathrm{d} v \tag{B.1}
\end{equation*}
$$

As shorthand for the function in condition (i) of Proposition 3, define

$$
\begin{equation*}
G(v):=\kappa F(v)-u^{\prime}(v) f(v) \tag{B.2}
\end{equation*}
$$

We establish some properties of the W and G functions.
Lemma B.1. Assume Condition $L Q$ and f is logconcave on $[0,1]$. The functions W and G defined by (B.1) and (B.2) are respectively quasiconcave and quasiconvex on $[0,1]$, both strictly so if either $\gamma>0$ or f is strictly logconcave on $[0,1]$. Furthermore, for any $c^{*} \in \arg \max _{c \in[0,1]} W(c), G^{\prime}\left(c^{*} / 2\right) \leq 0$ if $c^{*}>0$ and $G^{\prime}\left(c^{*}\right) \geq 0$ if $c^{*}<1$.

Proof. The proof proceeds in four steps. Throughout, we restrict attention to the domain $[0,1]$ for the type density. Step 1 shows that G is (strictly) quasiconvex and that $\left\{v: G^{\prime}(v)=0\right\}$ is connected. Step 2 shows that W can be expressed in terms of G^{\prime}. Step 3 establishes that given any maximizer c^{*} of W, G is decreasing on $\left[0, c^{*} / 2\right]$ and increasing on $\left[c^{*}, 1\right]$. Step 4 establishes the (strict) quasiconcavity of W. Note that under Condition LQ, $\kappa \equiv \inf _{v \in[0,1)}-u^{\prime \prime}(v)=2 \gamma$, $u^{\prime}(v)=1-\gamma+2 \gamma(1-v)$, and hence $G(v)=2 \gamma F(v)-(1-\gamma+2 \gamma(1-v)) f(v)$.

Step 1: We first establish that G is (strictly) quasiconvex and that $\left\{v: G^{\prime}(v)=0\right\}$ is connected. Logconcavity of f implies that its modes (i.e., maximizers) are connected, and moreover $f^{\prime}(v)=0 \Longrightarrow v$ is a mode. Denote by Mo the smallest mode. Since

$$
\begin{equation*}
G^{\prime}(v)=4 \gamma f(v)-(1-\gamma+2 \gamma(1-v)) f^{\prime}(v) \tag{B.3}
\end{equation*}
$$

it holds that $\operatorname{sign} G^{\prime}(v)=\operatorname{sign} \beta(v)$, where

$$
\beta(v):=4 \gamma-\frac{f^{\prime}(v)}{f(v)}(1-\gamma+2 \gamma(1-v))
$$

On the domain $[0, \mathrm{Mo}), f^{\prime} / f$ is positive and decreasing by logconcavity. Furthermore, $1-$ $\gamma+2 \gamma(1-v)$ is positive and decreasing. As the product of positive decreasing functions is decreasing, β is increasing on the domain $[0, \mathrm{Mo})$. Since $\beta(v) \geq 0$ when $v \geq$ Mo, it follows that β is upcrossing (once strictly positive, it stays positive), and hence G is quasiconvex.

We claim $\{v: \beta(v)=0\}$ is connected, which implies the same about $\left\{v: G^{\prime}(v)=0\right\}$. If $\gamma=0$ then $\beta(v)=0 \Longleftrightarrow f^{\prime}(v)=0$, which is a connected set, as noted earlier. If $\gamma>0$, then the conclusion follows because β is increasing on $[0, \mathrm{Mo}), \beta(v)>0$ for $v>\operatorname{Mo}\left(\right.$ as $\left.f^{\prime}(v) \leq 0\right)$, and β is continuous. Furthermore, analogous observations imply that if either f is strictly logconcave or $\gamma>0$, then $\left|\left\{v: G^{\prime}(v)=0\right\}\right| \leq 1$ and so G is strictly quasiconvex.

Step 2: We now show that

$$
\begin{equation*}
W^{\prime}(c)=\int_{c / 2}^{c}(v-c) G^{\prime}(v) \mathrm{d} v \tag{B.4}
\end{equation*}
$$

The derivation is as follows:

$$
\begin{aligned}
W^{\prime}(c) & =(F(c)-F(c / 2))(1+\gamma-2 \gamma c)-\frac{c}{2} f(c / 2)(1+\gamma-\gamma c) \\
& =(1+\gamma-2 \gamma c)\left[\int_{c / 2}^{c} f(v) \mathrm{d} v-\frac{c}{2} f(c / 2)\right]-\gamma \frac{c^{2}}{2} f(c / 2) \\
& =-(1+\gamma-2 \gamma c) \int_{c / 2}^{c}(v-c) f^{\prime}(v) \mathrm{d} v-\gamma \frac{c^{2}}{2} f(c / 2) \\
& =-\int_{c / 2}^{c}(v-c)(1+\gamma-2 \gamma v) f^{\prime}(v) \mathrm{d} v+2 \gamma\left[-\int_{c / 2}^{c}(v-c)^{2} f^{\prime}(v) \mathrm{d} v-\left(\frac{c}{2}\right)^{2} f(c / 2)\right] \\
& =-\int_{c / 2}^{c}(v-c)(1+\gamma-2 \gamma v) f^{\prime}(v) \mathrm{d} v+2 \gamma \int_{c / 2}^{c} 2(v-c) f(v) \mathrm{d} v \\
& =\int_{c / 2}^{c}(v-c) G^{\prime}(v) \mathrm{d} v .
\end{aligned}
$$

The first equality above is obtained by differentiating (B.1) and using $u^{\prime}(c)=1+\gamma-2 \gamma c$ and $u(c)-u(0)=c(1+\gamma-\gamma c)$; the third and fifth equalities use integration by parts; the last equality involves substitution from (B.3); and the remaining equalities follow from algebraic manipulations.

Step 3: We now establish that for any $c^{*} \in \arg \max _{c \in[0,1]} W(c), c^{*}>0 \Longrightarrow G^{\prime}\left(c^{*} / 2\right) \leq 0$ and $c^{*}<1 \Longrightarrow G^{\prime}\left(c^{*}\right) \geq 0$.

By Step 1, there exist v_{*} and v^{*} with $0 \leq v_{*} \leq v^{*} \leq 1$ such that $G^{\prime}(v)<0$ on $\left[0, v_{*}\right), G^{\prime}(v)=0$ on $\left(v_{*}, v^{*}\right)$, and $G^{\prime}(v)>0$ on $\left(v^{*}, 1\right]$. By (B.4), $c \in\left(0, v_{*}\right) \Longrightarrow W^{\prime}(c)>0$, and $c / 2 \in\left(v^{*}, 1\right) \Longrightarrow$ $W^{\prime}(c)<0$. Since c^{*} is optimal, $c^{*}>0 \Longrightarrow W^{\prime}\left(c^{*}\right) \geq 0 \Longrightarrow c^{*} / 2 \leq v^{*} \Longrightarrow G^{\prime}\left(c^{*} / 2\right) \leq 0$. Similarly, $c^{*}<1 \Longrightarrow W^{\prime}\left(c^{*}\right) \leq 0 \Longrightarrow c^{*} \geq v_{*} \Longrightarrow G^{\prime}\left(c^{*}\right) \geq 0$.

Step 4: Finally we establish that W is quasiconcave, strictly if $\gamma>0$ or f is strictly logconcave. For this it is sufficient to establish that if $c>0$ and $W^{\prime}(c)=0$, then $W^{\prime \prime}(c) \leq 0$, with a strict inequality if $\gamma>0$ or f is strictly logconcave.

Differentiating (B.4),

$$
\begin{equation*}
W^{\prime \prime}(c)=\frac{c}{4} G^{\prime}(c / 2)-(G(c)-G(c / 2)) \tag{B.5}
\end{equation*}
$$

Integrating by parts,

$$
\int_{c / 2}^{c}\left[(v-c) G^{\prime}(v)+G(v)\right] \mathrm{d} v=[(v-c) G(v)]_{c / 2}^{c}=\frac{c}{2} G(c / 2) .
$$

Now fix any $c>0$ such that $W^{\prime}(c)=0$ (if no such c exists, W is monotonic and hence quasiconcave). By (B.4) and the above integration by parts, $G(c / 2)=(2 / c) \int_{c / 2}^{c} G(v) \mathrm{d} v$, which, because G is quasiconvex by Step 1, implies $G(c / 2) \leq G(c)$, with a strict inequality if $\gamma>0$ or f strictly logconcave. Similarly $G^{\prime}(c / 2) \leq 0$, and hence from (B.5) we conclude that $W^{\prime \prime}(c) \leq 0$, with a strict inequality if $\gamma>0$ or f is strictly logconcave.

We build on Lemma B. 1 to establish Corollary 3 by verifying the conditions of Proposition 2 and Proposition 3.

Proof of Corollary 3. If the interval delegation set $\left[c^{*}, 1\right]$ is optimal then c^{*} must maximize $W(c)$ defined in (B.1). Hence if W is strictly quasiconcave—as is the case if $\gamma>0$ or f is strictly logconcave on $[0,1]$, by Lemma B.1—there can be at most one interval that is optimal. So it suffices to establish that if $c^{*} \in \arg \max _{c \in[0,1]} W(c)$ then $\left[c^{*}, 1\right]$ is optimal.

To that end, we verify that if $c^{*}=1$ the conditions of Proposition 2 are satisfied and, if $c^{*}<1$, then conditions (i)-(iii) of Proposition 3 are satisfied. Note that condition (i) is immediate from Lemma B.1. As conditions (ii) and (iii) are vacuous for $c^{*}=0$ we need only consider $c^{*} \in(0,1]$. For any $c^{*} \in(0,1)$ conditions (ii) and (iii) are jointly equivalent to

$$
\left(u^{\prime}(0)-\kappa s\right) \frac{F\left(c^{*} / 2\right)-F(s)}{c^{*} / 2-s} \leq u^{\prime}\left(c^{*}\right) \frac{F\left(c^{*}\right)-F\left(c^{*} / 2\right)}{c^{*} / 2} \leq\left(u^{\prime}\left(c^{*}\right)+\kappa\left(c^{*}-t\right)\right) \frac{F(t)-F\left(c^{*} / 2\right)}{t-c^{*} / 2}
$$

for all $s \in\left[0, c^{*} / 2\right)$ and $t \in\left(c^{*} / 2, c^{*}\right]$. Substituting into the middle expression from the firstorder condition $W^{\prime}\left(c^{*}\right)=0$ (i.e., setting expression (2) equal to zero and rearranging) yields
$\left(u^{\prime}(0)-\kappa s\right) \frac{F\left(c^{*} / 2\right)-F(s)}{c^{*} / 2-s} \leq\left(u\left(c^{*}\right)-u(0)\right) \frac{f\left(c^{*} / 2\right)}{c^{*}} \leq\left(u^{\prime}\left(c^{*}\right)+\kappa\left(c^{*}-t\right)\right) \frac{F(t)-F\left(c^{*} / 2\right)}{t-c^{*} / 2}$
for all $s \in\left[0, c^{*} / 2\right)$ and $t \in\left(c^{*} / 2, c^{*}\right]$. So if (B.6) holds for $c^{*} \in(0,1)$ then the conditions in Proposition 3 are verified. On the other hand, since the condition in Proposition 2 is equivalent to the right-most term in (B.6) being larger than the left-most term for all $s \in\left[0, c^{*} / 2\right.$) and $t \in\left(c^{*} / 2, c^{*}\right]$ when $c^{*}=1$, (B.6) holding for $c^{*}=1$ implies the condition in Proposition 2. Accordingly, we fix a $c^{*}>0$ and verify the two inequalities of (B.6) in turn.

First inequality of (B.6): Using $u^{\prime}(a)=1+\gamma-2 \gamma a, \kappa=2 \gamma$, and $\frac{u(a)-u(0)}{a}=1+\gamma-\gamma a$, the first inequality of (B.6) reduces to

$$
(1+\gamma-2 \gamma s) \frac{F\left(c^{*} / 2\right)-F(s)}{c^{*} / 2-s} \leq\left(1+\gamma-\gamma c^{*}\right) f\left(c^{*} / 2\right) \quad \forall s \in\left[0, c^{*} / 2\right)
$$

It follows from L'Hopital's rule that the above inequality holds with equality in the limit as $s \rightarrow c^{*} / 2$. Hence it is sufficient to demonstrate that the LHS of the inequality is increasing for all $s \in\left[0, c^{*} / 2\right)$. For any $s \in[0,1]$ let

$$
\begin{equation*}
D(s):=\left(1+\gamma-\gamma c^{*}\right)\left(F\left(c^{*} / 2\right)-F(s)\right)-\left(c^{*} / 2-s\right)(1+\gamma-2 \gamma s) f(s), \tag{B.7}
\end{equation*}
$$

and observe that

$$
\frac{\partial}{\partial s}\left[(1+\gamma-2 \gamma s) \frac{F\left(c^{*} / 2\right)-F(s)}{c^{*} / 2-s}\right]=\frac{1}{\left(c^{*} / 2-s\right)^{2}} D(s)
$$

So it is sufficient to show that, for all $s \in\left[0, c^{*} / 2\right), D(s) \geq 0$. This holds because $D\left(c^{*} / 2\right)=0$ and, for all $s<c^{*} / 2$,

$$
\begin{align*}
D^{\prime}(s) & =\left(c^{*} / 2-s\right)\left[4 \gamma f(s)-(1+\gamma-2 \gamma s) f^{\prime}(s)\right] \quad \text { differentiating (B.7) and simplifying } \\
& =\left(c^{*} / 2-s\right) G^{\prime}(s) \quad \text { substituting from (B.3) } \tag{B.8}\\
& \leq 0 \quad \text { by Lemma B.1. }
\end{align*}
$$

Second inequality of (B.6): Using $u^{\prime}(a)=1+\gamma-2 \gamma a, \kappa=2 \gamma$, and $\frac{u(a)-u(0)}{a}=1+\gamma-\gamma a$, the second inequality of (B.6) reduces to

$$
\left(1+\gamma-\gamma c^{*}\right) f\left(c^{*} / 2\right) \leq(1+\gamma-2 \gamma t) \frac{F(t)-F\left(c^{*} / 2\right)}{t-c^{*} / 2} \quad \forall t \in\left(c^{*} / 2, c^{*}\right]
$$

Using L'Hopital's rule for the limit as $t \rightarrow c^{*} / 2$ and the fact that $W^{\prime}\left(c^{*}\right) \geq 0$ by optimality of $c^{*}>0$, it follows that

$$
\lim _{t \rightarrow c^{*} / 2}(1+\gamma-2 \gamma t) \frac{F(t)-F\left(c^{*} / 2\right)}{t-c^{*} / 2}=\left(1+\gamma-\gamma c^{*}\right) f\left(c^{*} / 2\right) \leq\left(1+\gamma-2 \gamma c^{*}\right) \frac{F\left(c^{*}\right)-F\left(c^{*} / 2\right)}{c^{*} / 2}
$$

Hence it is sufficient to show that $(1+\gamma-2 \gamma t) \frac{F(t)-F\left(c^{*} / 2\right)}{t-c^{*} / 2}$ is quasiconcave for $t \in\left(c^{*} / 2, c^{*}\right]$. Note that

$$
\frac{\partial}{\partial t}\left[(1+\gamma-2 \gamma t) \frac{F(t)-F\left(c^{*} / 2\right)}{t-c^{*} / 2}\right]=\frac{1}{\left(t-c^{*} / 2\right)^{2}} D(t)
$$

where D is defined in (B.7), and so

$$
\operatorname{sign} \frac{\partial}{\partial t}\left[(1+\gamma-2 \gamma t) \frac{F(t)-F\left(c^{*} / 2\right)}{t-c^{*} / 2}\right]=\operatorname{sign} D(t)
$$

Since $D\left(c^{*} / 2\right)=0$, it follows that $(1+\gamma-2 \gamma t) \frac{F(t)-F\left(c^{*} / 2\right)}{t-c^{*} / 2}$ is quasiconcave for $t \in\left(c^{*} / 2, c^{*}\right]$ if
D is quasiconcave. D is quasiconcave because, as was shown in (B.8), $D^{\prime}(t)=\left(c^{*} / 2-t\right) G^{\prime}(t)$, which is positive then negative on $\left(c^{*} / 2, c^{*}\right]$ by the quasiconvexity of G (Lemma B.1).

C. Proof of Proposition 4

Proof of Proposition 4(i). Let $H(a, c)$ denote the cumulative distribution function of the action implemented under the interval delegation set $[c, 1]$. That is,

$$
H(a, c)= \begin{cases}0 & \text { if } a<0 \\ F(c / 2) & \text { if } 0 \leq a<c \\ F(a) & \text { if } c \leq a<1 \\ 1 & \text { if } 1 \leq a\end{cases}
$$

Consider any $0 \leq c_{L}<c_{H} \leq 1$. The difference $H\left(\cdot, c_{L}\right)-H\left(\cdot, c_{H}\right)$ is upcrossing: once strictly positive, it stays positive.

Given any pair of Proposer utilities, u_{1} and u_{2}, where u_{1} is strictly more risk averse than u_{2}, define $K:[0,1] \times\{1,2\} \rightarrow \mathbb{R}$ by $K(a, i):=u_{i}^{\prime}(a)$. It holds that $\frac{\partial \log K(a, i)}{\partial a}$ is strictly increasing in i, and hence K is strictly totally positive of order 2 . It follows from the variation diminishing property (Karlin, 1968, Theorem 3.1 on p. 21) that

$$
S(i):=\int_{0}^{1} K(a, i)\left[H\left(a, c_{L}\right)-H\left(a, c_{H}\right)\right] \mathrm{d} a
$$

satisfies

$$
S(1) \geq(>) 0 \Longrightarrow S(2) \geq(>) 0
$$

Equivalently,

$$
\int_{0}^{1} u_{1}^{\prime}(a)\left[H\left(a, c_{L}\right)-H\left(a, c_{H}\right)\right] \mathrm{d} a \geq(>) 0 \Longrightarrow \int_{0}^{1} u_{2}^{\prime}(a)\left[H\left(a, c_{L}\right)-H\left(a, c_{H}\right)\right] \mathrm{d} a \geq(>) 0
$$

Integrating by parts, we obtain

$$
\int_{0}^{1} u_{1}^{\prime}(a)\left[H\left(\mathrm{~d} a, c_{L}\right)-H\left(\mathrm{~d} a, c_{H}\right)\right] \leq(<) 0 \Longrightarrow \int_{0}^{1} u_{2}^{\prime}(a)\left[H\left(\mathrm{~d} a, c_{L}\right)-H\left(\mathrm{~d} a, c_{H}\right)\right] \leq(<) 0
$$

A standard monotone comparative statics argument (Milgrom and Shannon, 1994) then implies that $C^{*}\left(u_{2}\right) \geq_{S S O} C^{*}\left(u_{1}\right)$.

Proof of Proposition 4(ii). Let density $f(v)$ strictly dominate density $g(v)$ in likelihood ratio on the unit interval: i.e., for all $0 \leq v_{L}<v_{H} \leq 1, f\left(v_{L}\right) g\left(v_{H}\right)<f\left(v_{H}\right) g\left(v_{L}\right)$. Let $w(c, v)$ denote Proposer's payoff under the interval delegation set $[c, 1]$ when Vetoer's type is v. We have

$$
w(c, v)= \begin{cases}u(0) & \text { if } v<c / 2 \\ u(c) & \text { if } v \in(c / 2, c) \\ u(v) & \text { if } v \in(c, 1) \\ u(1) & \text { if } v>1\end{cases}
$$

Consider any $0 \leq c_{L}<c_{H} \leq 1$. The difference $w\left(c_{H}, \cdot\right)-w\left(c_{L}, \cdot\right)$ is upcrossing: once strictly positive, it stays positive. As in the proof of Proposition 4(i), it follows from the variation diminishing property (Karlin, 1968, Theorem 3.1 on p. 21) that

$$
\int_{0}^{1}\left[w\left(c_{H}, v\right)-w\left(c_{L}, v\right)\right] g(v) \mathrm{d} v \geq(>) 0 \Longrightarrow \int_{0}^{1}\left[w\left(c_{H}, v\right)-w\left(c_{L}, v\right)\right] f(v) \mathrm{d} v \geq(>) 0
$$

A standard monotone comparative statics argument (Milgrom and Shannon, 1994) then implies that $C^{*}(f) \geq_{S S O} C^{*}(g)$.

D. Proof of Proposition 5

Let a_{U} and a_{I} denote proposals in some noninfluential and influential cheap-talk equilibria, respectively (the latter may not exist). It is straightforward that $a_{U}>0$ and, if it exists, $a_{I} \in(0,1)$. Since Proposition 5's conclusion is trivial for full delegation ($c^{*}=0$), it suffices to establish that any optimal interval delegation set $\left[c^{*}, 1\right]$ with $c^{*} \in(0,1)$ has $c^{*}<\min \left\{a_{I}, a_{U}\right\}$. (By convention, $\min \left\{a_{I}, a_{U}\right\}=a_{U}$ if a_{I} does not exist.)

Plainly, a_{U} is a noninfluential equilibrium proposal if and only if

$$
a_{U} \in \underset{a}{\arg \max }[u(0) F(a / 2)+u(a)(1-F(a / 2))]
$$

and so if $a_{U}<1$ then it solves the first-order condition

$$
\begin{equation*}
2 u^{\prime}(a)[1-F(a / 2)]-f(a / 2)[u(a)-u(0)]=0 \tag{D.1}
\end{equation*}
$$

Any influential cheap-talk equilibrium outcome can be characterized by a threshold type $v_{I} \in(0,1)$ such that types $v<v_{I}$ pool on the "veto threat" message, and types $v>v_{I}$ pool
on the "acquiesce" message. Since type v_{I} must be indifferent between sending the two messages, and she will accept either proposal from the Proposer, it holds that

$$
v_{I}=\frac{1+a_{I}}{2}
$$

It follows that a_{I} is an influential equilibrium proposal if and only if

$$
a_{I} \in \underset{a}{\arg \max }\left[u(0) \frac{F(a / 2)}{F\left(\left(1+a_{I}\right) / 2\right)}+u(a)\left(1-\frac{F(a / 2)}{F\left(\left(1+a_{I}\right) / 2\right)}\right)\right] .
$$

The first-order condition is that function (3) in the main text equals zero, i.e., $a_{I} \in(0,1)$ solves

$$
\begin{equation*}
2 u^{\prime}(a)[F((1+a) / 2)-F(a / 2)]-f(a / 2)[u(a)-u(0)]=0 . \tag{D.2}
\end{equation*}
$$

Note that at $a=0$, the LHS is strictly positive. Hence, if the LHS is strictly downcrossing on $(0,1)$, then (D.2) has at most one solution in that domain; if there is a solution, then (D.2)'s LHS is strictly positive (resp., strictly negative) to its left (resp., right); furthermore, it can be verified that the solution then identifies an influential equilibrium. Note that if there is no solution to (D.2) on (0,1) then there is no influential equilibrium.

Turning to optimal interval delegation, recall from Section 4 that the threshold is a zero of the function (2), i.e., $c^{*} \in(0,1)$ solves

$$
\begin{equation*}
2 u^{\prime}(a)[F(a)-F(a / 2)]-f(a / 2)[u(a)-u(0)]=0 \tag{D.3}
\end{equation*}
$$

If the LHS is strictly downcrossing on $(0,1)$, then on that domain c^{*} is the unique solution to (D.3) and (D.3)'s LHS is strictly positive (resp., strictly negative) to the solution's left (resp., right).

For any $a \in(0,1)$ the LHS of (D.1) is strictly larger than the LHS of (D.2), which in turn is strictly larger than the LHS of (D.3). If there is no solution in (0,1) to (D.2), then its LHS is always strictly positive, and hence there are neither any influential equilibria nor any noninfluential equilibria with $a_{U}<1$, and we are done. So assume at least one solution in $(0,1)$ to (D.2). Let

$$
\begin{aligned}
& \underline{a}_{2}:=\inf \{a \in(0,1):(\text { D.2)'s LHS } \leq 0\} \\
& \bar{a}_{2}:=\sup \left\{a \in(0,1):(\text { D. } 2)^{\prime} \text { 's LHS } \geq 0\right\}
\end{aligned}
$$

and analogously define \underline{a}_{3} and \bar{a}_{3} using (D.3)'s LHS. The aforementioned ordering of the

Figure 1 - A density under which no compromise is the optimal delegation set when
Proposer has a linear loss function, but it is worse than some stochastic mechanism.
equations' LHS, (D.2)'s LHS being strictly positive at 0 , and continuity combine to imply $0 \leq \underline{a}_{3}<\underline{a}_{2}<a_{U}$, and $\bar{a}_{3} \leq \bar{a}_{2}$ with a strict inequality if either $\bar{a}_{2}<1$ or $\bar{a}_{3}<1$. Furthermore, $a_{I} \in\left[\underline{a}_{2}, \bar{a}_{2}\right]$ and $c^{*} \in\left[\underline{a}_{3}, \bar{a}_{3}\right]$.

If the LHS of (D.2) is strictly downcrossing on (0,1), then by the properties noted right after (D.2), $a_{I}=\underline{a}_{2}=\bar{a}_{2}<1$ and hence $c^{*}<\min \left\{a_{I}, a_{U}\right\}$. If the LHS of (D.3) is strictly downcrossing on (0,1), then by the properties noted right after (D.3), $c^{*}=\underline{a}_{3}=\bar{a}_{3}<1$ and hence $c^{*}<\min \left\{a_{I}, a_{U}\right\}$.

E. Stochastic Mechanisms can be Optimal

Example E.1. Suppose Proposer has a linear loss function, $\underline{v}=0, \bar{v}=1$, and $f(v)$ is strictly increasing except on $(1 / 2-\delta, 1 / 2+\delta)$, where it is strictly decreasing. Assume $\left|f^{\prime}(v)\right|$ is constant (on $[0,1]) .{ }^{1}$ Take $\delta>0$ to be small. See Figure 1.

Recall that if δ were 0 , then no compromise (i.e., the singleton menu $\{1\}$) would be optimal by Proposition 2 or the discussion preceding it. It can be verified that no compromise remains an optimal delegation set for small $\delta>0$. We argue below that Proposer can obtain a strictly higher payoff, however, by adding a stochastic option ℓ that has expected value $1 / 2$ and is chosen only by types in $(1 / 2-\delta, 1 / 2+\delta)$.

The stochastic option ℓ provides action $1-\frac{1}{2 p}$ with probability p and action 1 with probability $1-p$. For any $p \in(0,1)$, this lottery has expected value $1 / 2$. Moreover, when $p=\frac{1}{2-4 \delta}$, quadratic loss implies that type $1 / 2-\delta$ is indifferent between ℓ and action 0 while type $1 / 2+\delta$

[^1]is indifferent between ℓ and 1 . Consequently, any type in $[0,1 / 2-\delta)$ strictly prefers 0 to both ℓ and 1 ; any type in $(1 / 2-\delta, 1 / 2+\delta)$ strictly prefers ℓ to both 0 and 1 ; and any type in $(1 / 2+\delta, 1]$ strictly prefers 1 to both ℓ and 0 .

Therefore, offering the menu $\{\ell, 1\}$ rather than $\{1\}$ changes the induced expected action from 0 to $1 / 2$ when $v \in(1 / 2-\delta, 1 / 2)$ and from 1 to $1 / 2$ when $v \in(1 / 2,1 / 2+\delta)$. Since $f(v)$ is strictly decreasing on $(1 / 2-\delta, 1 / 2+\delta)$, Proposer is strictly better off. Note that if one were to replace ℓ with a deterministic option that provides ℓ 's expected action $1 / 2$, then all types in $(1 / 4,3 / 4)$ would strictly prefer to choose that option over both 0 and 1 . So the menu $\{1 / 2,1\}$ is strictly worse than not only $\{\ell, 1\}$ but also just $\{1\} .^{2}$

References

Karlin, S. (1968): Total Positivity, vol. I, Stanford, California: Stanford University Press.
Milgrom, P. and C. Shannon (1994): "Monotone Comparative Statics," Econometrica, 157180.

[^2]
[^0]: *Department of Economics, Columbia University. Email: nkartik@columbia. edu.
 ${ }^{\dagger}$ Department of Economics, Arizona State University. Email: andreas.kleiner@asu.edu.
 ${ }^{\ddagger}$ Department of Economics, University of Pittsburgh. Email: rmv22@pitt. edu.

[^1]: ${ }^{1}$ As it is nondifferentiable at two points, this density violates our maintained assumption of continuous differentiability. But the example could straightforwardly be modified to satisfy that assumption.

[^2]: ${ }^{2}$ Vis-à-vis Lemma A. 1 and its proof that involves replacing a stochastic mechanism with its "averaged" deterministic counterpart: in this example the deterministic mechanism that solves problem (R) cannot be incentive compatible. In particular, it is not a mechanism corresponding to any delegation set.

