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Abstract

A key insight is that many, seemingly different, economic problems share a com-

mon mathematical structure: they all involve the maximization of a functional over

sets of monotonic functions that are either majorized by, or majorize, a given func-

tion. We first present new, simpler proofs for the main characterization results of the

extreme points of sets defined by monotonicity and majorization constraints obtained

by Kleiner, Moldovanu, and Strack (2021). We then demonstrate how the charac-

terization results can be fruitfully applied to a broad range of economic applications,

from auction and information design to decision problems under risk such as optimal

stopping. Finally, we conclude with an overview of recent, related work that extends

these characterizations to settings with additional constraints, multidimensional state

spaces, and alternative stochastic orders.

1 Introduction

This paper provides an overview of the applications of majorization and extreme points char-

acterizations to the solution of various economic design problems. We begin by reviewing
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the concept of majorization and its role in Economics, and then present new, simpler proofs

for the main characterization results of the extreme points of sets defined by monotonicity

and majorization constraints obtained by Kleiner, Moldovanu, and Strack (2021). The key

unifying insight is that many, seemingly different, economic problems share a common math-

ematical structure: they all involve the maximization of a functional over sets of monotonic

functions that are either majorized by, or majorize, a given function. We demonstrate how

the characterization results can be applied to auction design, contest design, information

design, optimal delegation, optimal stopping, and decision problems under risk. For peda-

gogical reasons we also revisit famous results such as Strassen’s Theorem from probability

theory and show how the extreme points approach yields intuitive and simple proofs.

For each application, we explain why the problem falls within our framework and how

extreme point characterizations constitute a very useful analytical tool. We conclude by

surveying some of the more recent, related work that extends these characterizations to

settings with additional constraints, multidimensional state spaces, and alternative stochastic

orders.

2 Extreme Points and Majorization

2.1 Majorization Preliminaries

Throughout the paper, we consider the set M of real-valued, non-decreasing, integrable func-

tions defined on the interval [0, 1] endowed with the L1-norm. 1 The monotonicity constraint

arises in applications for various reasons: for example, since cumulative distribution func-

tions are non-decreasing, the monotonicity constraint arises in information design problems

where a prior distribution is given and a posterior one is sought; since incentive-compatible

mechanisms often dictate non-decreasing allocations, the monotonicity constraint also arises
1Formally, f ∈ L1 is an equivalence class of functions that are equal almost everywhere. An equivalence

class f ∈ L1 is non-decreasing if it contains a non-decreasing element. Whenever f is non-decreasing, it has
a non-decreasing and right-continuous element, which we use as a canonical representative.
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in various mechanism design problems.

We will see how an additional majorization constraint captures resource constraints on the

available objects and prizes in auction and contest design, constraints on feasible information

structures in information design, and constraints induced by the absence of transfers in

delegation problems. Formally, for two functions f, g ∈ M we say that f majorizes g,

denoted by f ⪰ g if the following two conditions hold:

∫ 1

x
f(s) ds ≥

∫ 1

x
g(s) ds for all x ∈ [0, 1] and (1)∫ 1

0
g(s) ds =

∫ 1

0
f(s) ds.

We say that f weakly majorizes g, denoted by f ⪰w g, if the first condition above holds (but

not necessarily the second).

The above mentioned applications motivate the study of the subset of non-decreasing

functions that are majorized by, or majorize, a given function. Let

MPS(f) := {g ∈ M | f ⪰ g}

and denote by MPSw(f) the set of nonnegative, non-decreasing functions that are weakly

majorized by f . Finally, let

MPC(f) := {g ∈ M | g ⪰ f and f(0) ≤ g ≤ f(1)}.

An extreme point of a convex subset A is a point x ∈ A that cannot be represented as a

convex combination of two distinct points in A. Formally, if X is a vector space and A ⊆ X

is convex, x ∈ A is an extreme point of A if x = αy + (1 − α)z, for z, y ∈ A and α ∈ [0, 1]

imply together that y = x or z = x.

We characterize below the extreme points of MPS(f), MPSw(f), and MPC(f). It turns

out that the characterization of these extreme points is particularly tractable and that it can
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be used in at least three ways in various economic applications:

1. Information about extreme points directly gives qualitative insights into so-

lutions of optimization problems: Bauer’s Maximum Principle says that a convex,

upper-semicontinuous functional on a non-empty, compact and convex set A of a lo-

cally convex space attains its maximum at an extreme point of A. Therefore, for many

optimization problems a solution can be found at an extreme point, and properties

common to all extreme points are therefore satisfied by an optimal solution.

2. The characterization of extreme points is useful for results describing when

particular such points solve a linear optimization problem: For optimization

problems where a solution can be found at an extreme point, the characterization of

extreme points is often useful to use duality techniques to characterize when specific

extreme points are optimal (see Section 3).

3. Many properties of extreme points of a set are inherited by arbitrary ele-

ments of the set: The Krein–Milman Theorem states that any convex and compact

set A in a locally convex space is the closed, convex hull of its extreme points. There-

fore, any element of such a set is a limit of convex combinations of extreme points.

Alternatively, Choquet’s Theorem gives conditions such that any element is a mixture

of extreme points.2 Therefore, if all extreme points of a given set have a common

property and if this property is preserved by taking convex combinations and limits

(or taking mixtures), then every element of the set has this property. We repeatedly

use this insight below; for example, in an auction application we show that every ex-

treme point of MPSw(f) is the interim allocation rule of a BIC auction and deduce

from this that the set MPSw(f) characterizes the set of interim allocation rules of BIC

auctions.

The following result characterizes the extreme points of MPS(f):

2We say that an element x of a metric space is a mixture of a set A if there a probability distribution
with support A whose barycenter is x.
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Figure 1: An extreme point g of MPS(f) (left) and an extreme point g of MPC(f) (right).

Theorem 1. Let f be non-decreasing. Then g is an extreme point of MPS(f) if and only if

there exists a countable collection of disjoint intervals [xi, xi) indexed by i ∈ I such that for

a.e. x ∈ [0, 1]

g(x) =


f(x) if x /∈ ⋃

i∈I [xi, xi)∫ xi
xi

f(s) ds

xi−xi
if x ∈ [xi, xi).

(2)

Intuitively, if a function g is an extreme point of MPS(f) then, at any point in its domain,

either the majorization constraint binds, or the monotonicity constraint binds. This implies

either that g(x) = f(x) or that g is constant at x. See Figure 1 for an example of an extreme

point of MPS(f).

The previous result can be used to characterize the extreme points of MPSw(f). For

A ⊆ [0, 1], denote by 1A(x) the indicator function of A: it equals 1 if x ∈ A and it equals 0

otherwise.

Corollary 1. Suppose that f is non-decreasing and nonnegative. A function g is an ex-

treme point of MPSw(f) if and only if there is θ ∈ [0, 1] such that g is an extreme point of

MPS(f · 1[θ,1]) and g(x) = 0 for a.e. x ∈ [0, θ).

The corollary follows from Theorem 1 by observing that for any g ∈ MPSw(f) there is

θ ∈ [0, 1] such that g ∈ MPS(f ·1[θ,1]). The extreme points of the latter set are characterized

in Theorem 1.
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Finally, we characterize the extreme points of MPC(f).

Theorem 2. Let f be non-decreasing and continuous. Then g ∈ MPC(f) is an extreme point

of MPC(f) if and only if there exists a countable collection of intervals [xi, xi), (potentially

empty) sub-intervals [y
i
, yi) ⊂ [xi, xi), and numbers vi indexed by i ∈ I such that for a.e.

x ∈ [0, 1]

g(x) =



f(x) if x /∈ ⋃
i∈I [xi, xi)

f(xi) if x ∈ [xi, y
i
)

vi if x ∈ [y
i
, yi)

f(xi) if x ∈ [yi, xi).

(3)

To prove the above theorems, we use the following intuitive result that characterizes the

extreme points of certain sets of convex functions.

Lemma 1. (i) Let V : [a, b] → R be a continuous convex function and let K+
V be the set

of continuous convex functions U satisfying U(a) = V (a) and U(b) = V (b) that lie

strictly above V on (a, b). If K+
V ̸= ∅, it has a unique extreme point, which is the affine

function U satisfying U(a) = V (a) and U(b) = V (b).

(ii) Let V : [a, b] → R be a differentiable convex function and let K−
V be the set of continuous

convex functions U satisfying U(a) = V (a), U ′(a) = V ′(a), U(b) = V (b), and U ′(b) =

V ′(b) that lie strictly below V on (a, b). If K−
V ̸= ∅, the set of its extreme points equals

the set of continuous convex functions that consist of at most three affine pieces and

satisfy U(c) = V (c) and U ′(c) = V ′(c) for c = a and c = b.

Proof sketch.

Part (i). For functions U that are piece-wise affine, Figure 2 illustrates that U cannot be an

extreme point unless it consists of a single affine piece. More generally, whenever the left-

sided derivative U ′
− is not continuous, we can write U as a convex combination of U + εH

and U −εH, where H is a ‘wedge’-function (i.e., a piecewise linear convex function consisting
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of two pieces) with a kink at a discontinuity of U ′
−, which implies that U is not an extreme

point. On the other hand, if U is twice continuously differentiable, the second derivative

will be bounded away from zero on some interval if U is not affine. We can then choose

a smooth function H that vanishes outside this interval. For ε small enough, U ± εH lie

in K+
V , implying that U is not an extreme point. For the general case, see Theorem 5.1 in

Bronshtein (1978) (without proof) or the more general Lemma 9 in Augias and Uhe (2025).

Part (ii). Suppose that U is an extreme point of K−
V and let t1 := sup{t : U ′(t) = V ′(a)}

and t2 := inf{t : U ′(t) = V ′(b)} (see Figure 3 for an illustration). One can show that t1 > a

and t2 < b, so U(t1) < V (t1) and U(t2) < V (t2).3

Since U is convex, it lies above any wedge function W on [t1, t2] formed by its supporting

hyperplanes at t1 and t2. It follows that U is an extreme point of the set of convex functions

on [t1, t2] that lie above W and coincide with W at the endpoints. By part (i), U must

be affine on [t1, t2]. Conversely, it is easy to verify that each such function U is indeed an

extreme point. Q.E.D.

a b

V (x)
U(x)

Figure 2: A piecewise-affine convex function U that is not an extreme point of K+
V

Proof of Theorem 1. Let g be an extreme point of MPS(f) and define

U(x) :=
∫ x

0
g(s) ds

V (x) :=
∫ x

0
f(s) ds

3If t1 = a then, since U ′
+ must be continuous at a, there exist a < x1 < x2 such that U ′

−(x1) < U ′
−(x) for

all x > x1, U ′
+(x2) > U ′

+(x) for all x < x2, and U ′
−(x2) > U ′

+(x1). However, U must be an extreme point of
the set of convex functions that lie strictly above supporting hyperplanes of U at x1 and x2 and therefore,
by part (i), affine on [x1, x2]. This contradicts U ′

−(x2) > U ′
+(x1).
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a b

V (x)
U(x)

t1 t2

Figure 3: A piecewise-affine convex function U that is not an extreme point of K−
V

Note that U, V are continuous convex functions that coincide at 0 and 1 and such that

their slopes are bounded between f(0) and f(1). Moreover, U lies above V and must be an

extreme point of the set of such functions.

The set {x ∈ R : U(x) > V (x)} is open, and is therefore a countable collection of disjoint

intervals (xi, xi) for i ∈ I. Restricted to each interval [xi, xi], U must be an extreme point

of the set of convex continuous function lying above V and coinciding with V at xi and

xi. Therefore, U must be affine on [xi, xi] by Lemma 1 and g takes the form described in

Theorem 1.

Conversely, it is easy to verify that U is an extreme point if it takes the postulated form

and therefore that the corresponding g is an extreme point of MPS(f). Q.E.D.

Proof of Theorem 2. Let g be an extreme point of MPC(f) and define

U(x) :=
∫ x

0
g(s) ds

V (x) :=
∫ x

0
f(s) ds

Again observe that U, V are continuous, convex functions that coincide at 0 and 1 and such

that their slopes are bounded between f(0) and f(1). Also, U lies below V and, since f is

continuous by assumption, it follows that U ′(x) = V ′(x) for x ∈ {xi, xi}; finally, U must be

an extreme point of the set of such functions.

The set {x ∈ R : U(x) < V (x)} is open and is therefore a countable collection of disjoint
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intervals (xi, xi) for i ∈ I. By Lemma 1, on each interval [xi, xi], U must be piecewise affine

with U ′(x) = V ′(x) for x ∈ {xi, xi}. Therefore, g takes the form described in Theorem 2.

Conversely, it is easy to verify that U is an extreme point if it takes the postulated form

and therefore that the corresponding g is an extreme point of MPC(f). Q.E.D.

3 Optimization under Majorization Constraints

We now consider optimization problems where the objective is a linear (or possibly con-

vex) functional, and where the constraint set is defined by majorization and monotonicity

constraints. Many problems in Economics naturally have a linear objective since those corre-

spond to maximization of expected utility over some space of distributions. The next elegant

result, due to Fan and Lorentz (1954) is very useful for applications because it provides con-

ditions on the objective function such that a maximum over majorization sets determined by

a function f is attained either at f itself (highest variability), or at a particular function g

with at most two steps (lowest variability)

Theorem 3 (Fan and Lorentz). Let K : [0, 1] × [0, 1] → R . Then

∫ 1

0
K(f(t), t) dt ≤

∫ 1

0
K(g(t), t) dt

holds for any two non-decreasing functions f, g : [0, 1] → [0, 1] such that f ⪯ g if and only if

the function K(u, t) is convex in u and super-modular in (u, t).

3.1 Maximizing a Linear Functional on MPS(f)

Given a non-decreasing function f and a bounded function c consider the problem

max
h∈MPS(f)

∫ 1

0
c(x)h(x) dx. (4)

There are three cases:
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1. If c is non-decreasing, an optimal g will be as large as possible for high values of x.

From the majorization constraint it follows that f itself is a solution to the optimization

problem.

2. If c is non-increasing, an optimal g will be as large as possible for low values of x. From

the monotonicity constraint it follows that the constant function g(x) =
∫ 1

0 f(s) ds for

all x is a solution.

3. If c is not monotone, other extreme points of MPS(f) may be optimal. Proposition 2

in Kleiner, Moldovanu, and Strack (2021) characterizes the conditions under which an

arbitrary extreme point is optimal. Roughly speaking, the ironing technique, originally

used in Myerson (1981) for an optimization problem formulated without majorization

constraints, can be used if the constraint set is MPS.

3.2 Maximizing a Linear Functional on MPC(f)

We now analyze the problem

max
h∈MPC(f)

∫ 1

0
c(x)h(x) dx . (5)

Again, there are three cases:

1. If c is non-increasing, an optimal solution is as large as possible for small values of x.

It follows from the majorization constraint that f solves this problem.

2. If c is non-decreasing, an optimal solution is as large as possible for high values of x. It

follows from the majorization constraint and the boundary constraint that an optimum

is obtained at the step function g defined by

g(x) =


f(0) for x < x

f(1) for x ≥ x,
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where x solves ∫ x

0
f(0) ds +

∫ 1

x
f(1) ds =

∫ 1

0
f(s) ds

3. When c is not monotone, Proposition 3 in Kleiner, Moldovanu, and Strack (2021) use

the extreme points characterization together with duality results from Dworczak and

Martini (2019) to determine when particular extreme points are optimal.

3.3 How the Two Problems Differ

The two problems (4) and (5) differ in a fundamental way and distinct tools are needed to

solve them: for problem (4) with constraint set MPS, we can use an ironing procedure to

find an explicit solution, whereas for problem (5) with constraint set MPC we need to use a

guess-and-verify approach. To illustrate these differences, we contrast the two problems:

max
g∈MPS(f)

∫ 1

0
c(x)g(x) dx max

g∈MPC(f)

∫ 1

0
c(x)g(x) dx

Note that we can impose without loss of generality that g(1) = f(1) for any solution.4

Defining C(x) = −
∫ x

0 c(s) ds and using integration by parts, and eliminating the terms

C(1)f(1) (which are constant in g), these problems can be written as:

max
g∈MPS(f)

∫ 1

0
C(x) dg(x) max

g∈MPC(f)

∫ 1

0
C(x) dg(x)

The corresponding dual linear programs are given by (see, for example, Shapiro, 2010;

Dworczak and Martini, 2019):

min
p concave

∫ 1

0
p(x) df(x)

s.t. p ≥ C

min
p convex

∫ 1

0
p(x) df(x)

s.t. p ≥ C

Moreover, strong duality holds, and therefore g is an optimal solution to the primal
4Because g(1) ≤ f(1) and changing g at a single point will not change the objective value.
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problem if and only if there exists a feasible solution to the corresponding dual problem that

achieves the same value.

Note that the dual problem on the left is easy to solve: We aim to find a concave function

that lies above a given function C and minimizes the integral. The concave envelope Ĉ of

C is the pointwise smallest concave function that lies above C and therefore solves the dual

problem. It follows that g ∈ MPS(f) solves the primal problem if and only if both problems

attain the same value:
∫

C(s) dg(s) =
∫

Ĉ(s)df(s). This implies that g, when interpreted as

a probability measure, puts zero mass on points where Ĉ(s) < C(s). Letting {(xi, xi) : i ∈ I}

denote a maximal collection of maximal intervals on which Ĉ < C and observing that Ĉ is

affine when restricted to [xi, xi], it follows that a solution is given by the extreme point

g(x) =


f(x) if x /∈ ⋃

i∈I [xi, xi)∫ xi
xi

f(s) ds

xi−xi
if x ∈ [xi, xi).

Hence, an ironing technique analogous to Myerson provides a constructive method to obtain

a solution.

Contrast the above situation to the optimization problem with constraint set MPC: The

dual problem is given on the right and is not as immediate to solve. In general, if C is

not convex, there is no pointwise smallest convex function above C. This explains why no

procedure analogous to ironing is known to solve problems with the constraint set MPC.

Linear programming duality can still be used to verify whether a particular extreme point

solves a given problem, as illustrated in Kleiner, Moldovanu, and Strack (2021). However,

this method does not provide a direct construction of the solution to a specific problem.
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4 Applications

4.1 Allocation Problems

The problem of allocating heterogeneous goods to privately informed agents lies at the heart

of mechanism design theory. This framework, pioneered by Myerson (1981) for single-object

auctions, has been extended to encompass increasingly complex allocation environments. A

fundamental question in this literature is: what allocation rules can be implemented when

agents have private information about their preferences over the objects?

The seminal work of Border (1991) provided a complete solution to the above question for

single-object settings by characterizing feasible interim allocation rules.5 We illustrate in this

section how the methodology developed above can be used to obtain a simple characterization

of feasible allocation rules: these are precisely the allocations that are weakly majorized by

the efficient allocation. This argument extends Border’s (1991) result to settings with objects

of heterogeneous qualities and provides a simple proof.

There are n agents. For each agent i, her type ti is drawn uniformly and independently

from [0, 1]. Each agent values at most one object, and the value of an agent with type t is

v = V (t), where V : [0, 1] → R is strictly increasing and bounded.6

There are n objects with qualities 0 ≤ q1 ≤ q2 ≤ . . . ≤ qn = 1, and we define A ⊂

{0, q1, q2 . . . , qn}n to be the set of feasible allocations that allocate each object at most once,

and allocate to each agent at most one object. If agent i with type ti receives an object with

quality q and pays p for it, her payoff is v(ti)q − p.

Fix an allocation rule a : [0, 1]n → ∆(A) that depends on the agents’ types t1, . . . , tn and

on the outcome ω of a randomization device. For each i, define the interim allocation rule

by

Ai(ti) = Et−i
[ai(ti, t−i)|ti]

5See also Maskin and Riley (1984) and Matthews (1984). This is not the original formulation. For
connections to majorization see Hart and Reny (2015).

6Equivalently, values are distributed I.I.D. according to the CDF F := V −1.
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This represents the expected quality obtained by agent i with type ti. The interim allocation

rule Ai(ti) captures which quality agent i expects to receive based solely on her own type,

averaging over all possible type realizations of other agents. It is straightforward to show

that an allocation a is part of a Bayesian incentive compatible (BIC) mechanism if and only

if each induced interim allocation Ai is non-decreasing.

Denote by a∗ the assortative allocation of agents to objects where the highest type gets

highest quality, etc. and where ties are broken by fair randomization. In our symmetric

model, assortative matching a∗ is incentive compatible, and induces the symmetric interim

allocation

A∗
i (ti) =

n∑
k=1

qk

[
(n − 1)!

(k − 1)!(n − k)!(ti)k−1(1 − ti)n−k

]
.

A vector of interim allocations A = (A1, . . . , An) where Ai : [0, 1] → R is feasible if

there exists an allocation rule a that induces A as its set of interim allocations. We restrict

attention to non-decreasing and symmetric interim allocation rules where Ai = Aj for i, j =

1, 2, . . . , n.

To understand which allocation rules are implementable, consider first the simplest case:

allocating a single object among n agents (i.e., qn = 1 and qk = 0 for k < n). The efficient

(first-best) allocation gives the object to the highest type, yielding the interim allocation

A∗(ti) = tn−1
i . This is just the probability that agent i has the highest type among all n

agents. Note that A ⪯w A∗ if and only if
∫ 1

t A(s)ds ≤
∫ 1

t sn−1ds = 1
n
[1 − tn] for all t. In

our terminology, Border’s theorem says that a non-decreasing symmetric interim allocation

A is feasible if and only if A is weakly majorized by the efficient (and assortative) allocation

A∗. This condition is clearly necessary since no rule can allocate with higher probability to

high types than the assortative allocation rule. It is not obvious that this condition is in fact

sufficient.

This majorization perspective becomes even more powerful when we move beyond single

objects to our setting with heterogeneous qualities:
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θ

Figure 4: An extreme point A of MPSw(A∗). The allocation rule A (solid red) is weakly majorized
by the efficient allocation A∗ (dashed blue). Below threshold θ, no allocation occurs. On intervals
like [0.5, 0.75], types are pooled with constant allocation preserving the average of A∗. This extreme
point can be implemented by assigning identical scores to pooled types.

Theorem 4. A non-decreasing symmetric allocation rule A is feasible if and only if A ⪯w A∗.

Theorem 4 establishes a novel connection between feasibility and efficiency as it estab-

lishes that the interim feasibility constraints are completely determined by the efficient allo-

cation. This connection is fruitful since it holds beyond the multi-unit allocation problem.

For example, Kleiner, Moldovanu, and Strack (2021) discuss an allocation problem with

group-specific quotas and argue that the feasible set is characterized as those interim allo-

cation rules that are weakly majorized by the most-efficient allocation rule subject to the

quotas.

Proof. The key insight is that any feasible allocation rule can be decomposed into a mixture

of simple ‘pooling’ rules. To see why, consider first extreme points of MPSw(A∗).

By Corollary 1, any extreme point A has a threshold θ below which no allocation occurs.

Above this threshold, Theorem 1 tells us that A alternates between two behaviors: either

it matches A∗ exactly, or it pools types within intervals, giving them all the same expected

allocation (see Figure 4 for an illustration).

This structure has a natural implementation: assign to each type t the score A(t), so that

all types in a given pooling interval receive identical scores, then allocate objects assortatively
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to scores with uniform tie-breaking, and do not allocate any object to types below the cutoff θ.

The majorization constraint ensures that the average allocation within each pooled interval

equals what those types would receive under efficient allocation, which shows that A is

feasible.

If A is a convex combination of extreme points, we can implement A by a convex com-

bination of the allocation rules that implement these extreme points. More generally, by

Choquet’s theorem any A ∈ MPSw(A∗) is a mixture of extreme points, which using Lemma

3, can be implemented by a mixture of the corresponding allocation rules. Q.E.D.

Another simple but powerful consequence of the above argument is the equivalence be-

tween Bayesian and dominant-strategy implementation in symmetric settings (first noted by

Manelli and Vincent, 2010 for auctions with one object and by Gershkov et al., 2013 for

general social choice settings with independent valuations and with transfers).

Corollary 2. For any symmetric, BIC mechanism there exists an equivalent, symmetric

DIC mechanism that yields all agents the same interim utility, and that creates the same

social surplus.

This follows because, as shown above, the designer can implement any BIC interim allo-

cation by randomizing over mechanisms such that each one of them implements an extreme

points of MPSw(A∗). Those mechanisms allocate according to the efficient (and assortative)

allocation if an agent’s type is not in a pooling interval. If the agent’s type is in a pooling

interval, they first redraw uniformly at random a “virtual” type from all the types in the

pooling interval and then allocate according to the efficient allocation as if the agent’s virtual

types were their true types. These operations preserve the ex-post monotonicity of the as-

sortative allocation and therefore the mechanisms are implementable in dominant strategies.

Finally the proof is completed because dominant strategy incentive compatibility is preserved

under randomization over mechanisms and thus any implementable interim allocation can be

implemented in dominant strategies by randomizing over the simple mechanisms described
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above.

4.1.1 Revenue Maximization

Consider now incentive-compatible mechanisms where the utility of the lowest type is zero (as

required by individual rationality and revenue optimality). Denote by J(v) = v− 1−V −1(v)
V −1′ (v) the

“virtual value” function.7 Then the expected revenue generated by a symmetric mechanism

with interim allocation rule A equals n
∫ 1

0 J(V (t))A(t) dt . Thus, by Theorem 4, the revenue

maximization problem becomes

max
A∈MPSw(A∗)

n
∫ 1

0
J(V (t))A(t) dt

Since the objective is linear, a maximum is attained at an extreme point of MPSw(A∗). The

characterization of extreme points therefore immediately yields qualitative insights into the

nature of optimal allocation rules, e.g., into the solution of the classical revenue maximization

problem for the allocation of one object analyzed by Myerson and by Riley and Samuelson.

Results on the solution to linear problems subject to majorization constraints (e.g., the

optimization of a weighted average of revenue and the agents’ welfare) can be used to obtain

finer properties of solutions to specific problems.

4.1.2 Optimal Dynamic Allocation

Gershkov and Moldovanu (2009) and Gershkov and Moldovanu (2010) study revenue and

welfare maximization in a dynamic assignment model where a fixed inventory of objects of

different qualities are assigned to impatient, agents that arrive over time and have different

values for quality. The main trade-off concerns the allocation of each object to either an

arriving agent or to a future arriving one with a potentially higher value for quality. In

optimal mechanisms the set of types is divided in distinct intervals and an agent with type
7Recall that the probability with which a given agent has a valuation below v is F (v) = V −1(v). Substi-

tuting this into J recovers the standard formulation of virtual values.
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in the i-th interval is assigned upon arrival the i-th best still available object. These authors

directly show how the optimal allocation is majorized by the efficient one and use this as

a measure of the inefficiency that is inherent in the dynamic model because the allocation

cannot be delayed and because agents do not arrive all at the same time. Ashlagi, Monachou,

and Nikzad (2025) allow for both objects and agents to randomly arrive over time and use

the above described majorization approach in order to design optimal queuing systems. In

their model agents and objects of different qualities arrive over time. Agents’ utilities are

given by a supermodular function that takes into account an agent’s preference for quality

(her type θ) and the quality ω of the object she receives (which may be stochastic). An

agent who waits t units of time until allocation incurs a cost c(t). The designer’s goal is to

maximize a linear combination of allocative efficiency and the agent’ welfare (which includes

their waiting costs).

The authors derive the feasible allocation plans (these are mean-preserving spreads of the

efficient, assortative matching) and use the extreme points characterization to compute an

optimal, direct revelation mechanism which belongs to the class of monotone disjoint queue

mechanisms. Such a mechanism features a finite number of queues: agents are assigned to a

specific queue if and only if their type falls in a certain interval. Every arriving object is sent

to each of the queues with a constant rate (possibly zero) and is then offered to the earliest

arrived agent assigned to that queue (First In First Out queue discipline).8 Roughly speaking,

a disjoint queue mechanism is monotone if for any two objects with distinct qualities, either

the two objects are sent to the same queue, or the higher quality object is sent to the queue

corresponding to higher types of the agents. Such mechanisms parallel the coarse matching

schemes discussed below.
8In a disjoint queue mechanism, the arrival rate of agents to each queue equals the arrival rate of objects to

that queue and therefore the queues’ lengths and the time a newly arrived agent has to wait until allocation
in a particular queue remain constant over time.
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4.1.3 A Continuum of Agents and Objects

We now analyze a canonical allocation problem with a continuum of agents and objects of

different qualities, often studied in the matching and contest literatures. We index agents by

their quantile and let the t-th quantile agent have a valuation V (t). Similarly, we index prizes

on [0, 1] and let the prize with index s have quality Q(s). We assume here for simplicity

that V and Q are strictly increasing. If an agent with index t obtains prize s and pays p,

her utility is given by V (t)Q(s) − p.

A symmetric allocation rule A maps an agent’s index t to her expected quality A(t). The

assortative allocation therefore satisfies A∗(t) = Q(t) and the same reasoning as above yields

the following useful characterization of feasible allocations:

Proposition 1. A symmetric, non-decreasing allocation A is feasible if and only if A ⪯w Q.

As an example, consider a contest where each agent with type t makes an effort (or

submits a bid), and where agents are matched to prizes according to their bids. The assor-

tative allocation is given by Q. and is strictly increasing. It is implemented by the strictly

increasing bidding equilibrium

b(t) = V (t) Q(t) −
∫ t

0
Q(τ)V ′(τ)dτ

It is well-known that agents’ welfare from the physical allocation of prizes is maximized by

the assortative scheme,9 but agents need to waste resources (e.g., signaling costs, payments

to a designer) in order to achieve the needed separation. Another feasible scheme is random

matching where, independently of bids, everyone gets a prize equal to the expected value of

the prize distribution µQ. Expected welfare from the physical allocation is smaller than under

assortative matching, but random matching can be implemented without costs. Intermediate

schemes can be obtained by coarse matching: for example, an agent with a bid in given

quantile is randomly matched to a prize in the same quantile, i.e., he expects to obtain the
9This follows from the rearrangement inequality of Hardy, Littlewood, and Pólya (1934).
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average prize in that quantile.

The Proposition below generalizes and complements several well-known, existing results

in the contest and matching literature (see Damiano and Li, 2007, Hoppe, Moldovanu, and

Sela, 2009, Condorelli, 2012 and Krishna et al., 2025). These are obtained as immediate

consequences of our theoretical insights described above together with the Fan-Lorenz The-

orem.

Proposition 2.

1. Assume that the distribution of types F is convex. Then each type of the agent prefers

random matching to any other scheme.

2. Random matching (assortative matching) maximizes the agents’ average utility if the

distribution of types F has an increasing (decreasing) Failure Rate.

3. If F has an increasing failure Rate, the revenue (i.e., average bid) to a designer is

maximized by assortative matching.

Proof. See Kleiner, Moldovanu, and Strack (2021).

4.1.4 Allocation with Externalities: Priority Services and Status Prizes

Gershkov and Winter (2023) consider a model of priority service and study the implications

of the allocation of priorities and their pricing on the consumer welfare. Xiao (2024) shows

how their model can be readily analyzed through the lens of majorization.

In their benchmark model a monopolist faces a mass 1 of consumers with heterogeneous

costs of waiting denoted by t, where t is distributed according to a distribution F on a

closed interval. The monopolist can serve (at zero cost) a mass m of consumers in m units

of time. A customer with type t who gets service at time τ ∈ [0, 1] while paying a price

p ≥ 0 has a utility of −p − tτ. A direct mechanism consists of a payment function p(t)

and a (potentially random) expected waiting time τ(t)—the latter must be non-increasing

in an incentive compatible mechanism. Note that an arbitrary non-increasing waiting time
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function τ(t) is not necessarily feasible here because of the abundance or scarcity of different

costs t—this is the information encoded by the distribution F. Let the function s(t) = 1−τ(t)

quantify the value of priority by the time saved compared to being served last.10 The key

observation here is the feasibility condition, again centered around the efficient allocation

(assortative matching) s(t) = 1 − τ(t) = F (t). Therefore one obtains that a non-increasing

expected waiting time function τ(t) is feasible if and only if s(t) ∈ MPS(F ).11 The intuition

is that the monopolist can induce full separation by offering infinitely many priority levels

and serving agents in descending order of their costs yielding s(t) = F (t). Any pooling of

types in the same priority level is a mean preserving spread of F in the quantile space.

An analogous feasibility condition also exists for the contest over status prizes considered

by Moldovanu, Sela, and Shi (2007) where agents value the mass of agents with status below

their own, but suffer from the mass of agents with status above their own (see Xiao, 2024).

Under full separation in a model with a continuum of agents and status levels,12 the status

value of an agent with type t is given by F (t) − (1 − F (t)) = 2F (t) − 1 where F denotes the

distribution of types. A non-decreasing status allocation s(t) is here feasible if and only if

s(t) ∈ MPS(2F (t) − 1).

Based on the above observations about feasibility and maximization under majorization

constraints, various problems can be solved, e.g., finding the optimal mechanism that maxi-

mizes some linear combination of the revenue obtained when agents pay for priority or make

efforts to earn status and the agents’ welfare (prizes minus costs).

4.2 Mean-Preserving Spreads

The concave order is a basic concept in decision theory under risk. It captures the idea that

risk-averse agents who have a concave utility function prefer one distribution over another

if the former’s outcomes are less dispersed than the latter’s. The connection between the
10The fixed value per consumer for being served at all is normalized here to zero.
11If exclusion is allowed then the condition involves only weak majorization.
12Moldovanu, Sela, and Shi (2007) only considers the case with a finite number of agents.
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concave order and majorization provides a useful geometric interpretation: in one dimen-

sion, the concave order is equivalent to comparing the areas under cumulative distribution

functions.

Formally, a cumulative distribution function F dominates a cumulative distribution func-

tion G in the concave order, F ≥cv G, if
∫

u(x) dF (x) ≥
∫

u(x) dG(x) for any concave,

continuous function u such that both integrals exist.

Proposition 3. F ≥cv G if and only if F ⪰ G.

The condition F ⪰ G (i.e.,
∫ ∞

s [F (x) − G(x)]dx ≥ 0) has a clear geometric interpreta-

tion: the area between the two CDFs, measured from any point s to infinity, shows that G

accumulates more probability mass in the upper tail than F . This excess mass in the tails

is precisely what makes G ’riskier’ than F . The proof of this result, which is standard (e.g.

Shaked and Shanthikumar, 2007), uses integration by parts and the fact that the extremal

functions of the set of concave functions are all of the form min{x, c} for c ∈ R.

Proof. Using integration by parts, we can write for any s,

∫ ∞

s
[F (x) − G(x)]dx = −s[F (s) − G(s)] −

∫ ∞

s
x d[F − G](x)

=
∫ ∞

−∞
− max{s, x}d[F − G](x).

Suppose F ≥cv G. Since − max{s, x} is concave in x, the right-hand side is nonnegative.

Moreover, since u(x) = x and u(x) = −x are concave, F and G have the same mean, which

implies
∫ ∞

−∞[F (x) − G(x)]dx = 0. Therefore, F ⪰ G.

For the converse, suppose there is a concave continuous function u such that
∫

u(x) dF (x) <∫
u(x) dG(x). We can approximate u by a piecewise affine concave function ū such that∫
ū(x) dF (x) <

∫
ū(x) dG(x). Moreover, there is an affine function a such that ū is a conic

combination of a and concave functions of the form − max{si, x} for si ∈ R. But then F ⪰ G

implies
∫

ū(x) dF (x) ≥
∫

ū(x) dG(x), a contradiction. Q.E.D.
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The next result relates the concave order to mean-preserving spreads. This fundamental

insight goes back to Hardy, Littlewood, and Pólya (1934) in the context of inequalities. It

was generalized by Blackwell, Sherman, Stein, and Cartier. Strassen (1965) gave the most

general formulation, showing that the existence of mean-preserving spreads is equivalent to

a certain martingale coupling.

If G is a mean-preserving spread of F , it is standard to use Jensen’s inequality to show

that F ≥cv G, which in turn implies F ⪰ G. The converse is more difficult to establish.

One needs to show that if F ⪰ G then G is a mean-preserving spread of F : there exists a

(measurable) kernel K : R → ∆(R) such that, for every x, the expected value of K(x) is x,

and such that K carries F to G:
∫

K(x) dF (x) = G. Intuitively, a mean-preserving spread

takes probability mass from each point of a distribution and spreads it toward the tails while

keeping the mean constant. This creates a “riskier” distribution in the sense that outcomes

become more dispersed.

Figure 5 illustrates the key insight: when G is an extreme point of MPS(F ), it is easy to

construct the required kernels. In particular, if G is an extreme point of MPS(F ), it equals

F everywhere except on intervals where G is constant. On each such interval [x, x), the mass

that F distributes on the interval is concentrated by G at the endpoints. The kernel K that

we construct splits the point mass at each x in the interval between x and x in proportions

that preserve the mean. For general G ∈ MPS(F ), we mix over such kernels to show that G

is a mean-preserving spread.13

Proposition 4. Let F and G have bounded support. Then F ⪰ G if and only if G is a

mean-preserving spread of F .

Proof. Suppose first that G is an extreme point of MPS(F ). By Theorem 1, there exists

a collection of disjoint intervals [xi, xi) indexed by i ∈ I such that G is constant on each

interval and coincides with F outside these intervals. Without loss of generality, we can
13Since our extreme point characterization applies to functions with a bounded domain, we restrict atten-

tion to distributions with bounded support in the following result.

22



F

G

x x x x

x

x

Figure 5: An extreme point G of MPS(F ) (left) and the corresponding mean-preserving spread
(right).

assume that there are no other intervals on which G is constant. We can define a kernel as

follows: if x ∈ (xi, xi) for some i ∈ I, K(x) is the probability measure with discrete support

{xi, xi} and expected value x; if x ̸∈ ⋃
i(xi, xi) then K(x) = δx. Because conditional on each

interval, the expected values of F and G coincide, we get G =
∫

K(x) dF (x). It follows that

G is a mean-preserving spread of F .

If G is a convex combination of extreme points of MPS(F ) then the corresponding convex

combination of kernels shows that G is also a mean-preserving spread. More generally, by

Choquet’s theorem any G ∈ MPS(F ) is a mixture of extreme points. The corresponding

mixture of kernels is again a kernel, showing that any G ∈ MPS(F ) is a mean-preserving

spread of F .14

For the converse, suppose that G is a mean-preserving spread of F and let K denote a

corresponding kernel. Jensen’s inequality implies for any concave function h that

∫
h(x) dG(x) =

∫ ∫
h(y)K(x, dy)dF (x) ≤

∫
h(x) dF (x)

14Formally, Choquet’s theorem implies there is a probability measure µ supported on the extreme points
of MPS(F ) that represents G. Define the function K : R × ext(MPS(F )) → R by letting, for each H ∈
ext(MPS(F )), K(·, H) denote the kernel constructed as above. It can be verified that for each x ∈ R, the
function K(x, ·) is continuous, hence K is jointly measurable. We can then define the (measurable) kernel
K̄ : R → R by K̄(x) :=

∫
K(x, H) dµ(H). Since the expected value of K̄(x) = x and

∫
K̄(x) dF (x) = G, it

follows that G is a mean-preserving spread of F .
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Hence F ≥cv G. In turn, Proposition 3 implies F ⪰ G. Q.E.D.

4.2.1 Decisions under Risk

As a quick application, recall the utility functionals with rank-dependent assessments of

probabilities a la Quiggin (1982) and Yaari (1987):

U(F ) =
∫ 1

0
v(t) d(g ◦ F )(t),

where F is the distribution of a random variable on the interval [0, 1], v : [0, 1] → R is differ-

entiable, strictly increasing and bounded, and where g : [0, 1] → [0, 1] is strictly increasing,

continuous and onto. The function v represents a transformation of monetary payoffs, while

the function g represents a transformation of probabilities. Letting g(x) = x yields the clas-

sical von-Neumann and Morgenstern expected utility model where risk-aversion is equivalent

to v being concave. Letting v(x) = x yields Yaari’s (1987) dual utility theory, where risk

aversion is equivalent to g being concave. Because of the possible interactions between v and

g, it is not a priori clear what properties yield risk aversion in the general rank-dependent

model.

To apply the Fan-Lorentz framework, we use integration by parts to obtain a representa-

tion of the form U(F ) =
∫ 1

0 K(F (t), t) dt + const, where K(u, t) = −g(u)v′(t). Note that the

Fan-Lorentz conditions (convexity and supermodularity of K) are satisfied here if and only

if g and v are concave. As a consequence, the utility functional U(F ) is then Schur-concave

(and hence monotonic with respect to the concave stochastic order), and the agent whose

preferences are represented by U is risk averse.15

15The equivalence between the concavity of the functions v and g, and risk-aversion has been pointed out
by Hong, Karni, and Safra (1987), who built on Machina (1982).
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Dybvig (1988) studies a simplified version of the following problem:

min
X

E[ XY ]

s.t. X ≥cv Z,

where Y and Z are given random variables (see also Beare, 2023). Y represents here the

distribution of a pricing function over the states of the world, and the goal is to choose, given

Y, the cheapest contingent claim X that is less risky than a given claim Z.16 We obtain that:

E[XY ] ≥
∫ 1

0
F −1

Y (1 − t)F −1
X (t) dt ≥

∫ 1

0
F −1

Y (1 − t)F −1
Z (t) dt

where the first inequality follows by the rearrangement inequality of Hardy, Littlewood and

Polya (the anti-assortative part!), and where the second inequality follows by the Fan-Lorentz

Theorem.

Choosing a random variable X that has the same distribution as Z and that is anti-

comonotonic with Y ,17 attains the lower bound of
∫ 1

0 F −1
Y (1 − t)F −1

Z (t) dt and such a choice

solves the portfolio choice problem.18 If Y ′ ≤cv Y, we also obtain by the Fan-Lorentz in-

equality (now applied to the functional with argument F −1
Y ) that

inf
X≻cvZ

E[XY ] =
∫ 1

0
F −1

Y (1 − t)F −1
Z (t) dt ≥

∫ 1

0
F −1

Y ′ (1 − t)F −1
Z (t) dt = inf

X≻cvZ
E[XY ′]

In other words, a decision maker that becomes more informed (in the Blackwell sense) about

the pricing distribution will achieve a better result.
16To make the problem well-defined, Y needs to be essentially bounded and X, Z must be integrable.
17This can always be done if the underlying probability space is non-atomic. A random vector (X, Y )

is anticomonotonic if there exists a random variable W and non-decreasing functions h1, h2 such that
(X, Y ) =dist (h1(W ), −h2(W ).

18For more details on this problem see Dana (2005) and the literature cited there. It does not use the
Fan-Lorentz inequality.
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4.3 Optimal Stopping

Optimal stopping problems arise in various economic contexts: for example, when a firm

considers when to exercise a real option. The mathematical structure of these problems

turns out to be connected to majorization. For an overview of this and related problems,

see Ob lój (2004).

Consider an agent observing a stochastic process (Mt : t ≥ 0) that evolves as a continuous

martingale starting from an initial distribution M0 ∼ F . The agent must decide when to stop

the process and receive the realized value. This setup captures many economic situations

where information arrives gradually and where the decision to stop is irreversible—once

you stop, you cannot restart the process. The assumption that the process is a martingale

is without loss of generality for a time-homogeneous diffusion as we can (under standard

assumptions) consider a transformation (ϕ(Mt))t of the original process that is a martingale.

The key insight is that the set of achievable outcome distributions through stopping

coincides with the set of mean-preserving spreads of the initial distribution. To make this

precise, we allow for randomized stopping strategies in order to obtain a convex problem.

Formally, a randomized stopping time is a function τ : Ω × [0, 1] → R+ that is measurable

with respect to the natural filtration augmented by an independent, uniform random variable.

Proposition 5. Let (Mt) be a continuous martingale with M0 ∼ F and unbounded quadratic

variation. For any probability measure G on R with bounded support, the following are

equivalent:

1. There exists a stopping time τ such that Mτ ∼ G and the stopped process Mt∧τ is

uniformly integrable.

2. G ∈ MPS(F ).

Proof Sketch. The forward direction follows from Doob’s optional stopping theorem: for any

stopping time τ such that Mt∧τ is uniformly integrable, it holds that E[Mτ ] = E[M0], and for

any convex function ϕ we have
∫

ϕ(r)dG(r) = E[E[ϕ(Mτ )|M0]] ≥ E[ϕ(M0)] =
∫

ϕ(r)dF (r)
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by Jensen’s inequality. Thus, G is a mean preserving spread of F .

For the reverse direction, we use our characterization of extreme points. If G is an extreme

point of MPS(F ) with the interval structure from Theorem 1, the optimal stopping rule is

transparent: stop at the first time the process exits the union of open intervals ⋃
i∈I(xi, xi).

Since the martingale has unbounded quadratic variation, it will eventually exit any bounded

interval, ensuring Mt∧τ is uniformly integrable. The resulting distribution is precisely G

because the process stops only at the boundary points {xi, xi} with the correct probabilities

to preserve the mean.

For general G ∈ MPS(F ), express it as a mixture of extreme points and use the corre-

sponding randomized mixture of stopping strategies. Q.E.D.

4.4 Persuasion with Preferences over the Posterior Mean

We consider here the persuasion problem studied by Kolotilin (2018), Gentzkow and Ka-

menica (2016), and Dworczak and Martini (2019).

The state of the world ω ∈ [0, 1] is distributed according to a continuous distribution

F : [0, 1] → [0, 1], and a sender can reveal information about the state to an uninformed

receiver. The sender chooses a signal (or Blackwell experiment) π that consists of a signal

realization space S and a family of distributions (πω)ω over S, conditional on each state.

By Bayes’ rule each signal induces a distribution of posteriors, and hence a distribution of

posterior means. The receiver observes the choice of signal and the signal realization, and

then chooses an optimal action that depends on the mean of the posterior, denoted here by x.

The sender’s indirect utility v is state independent and only depends on the posterior mean

x.19 The following result (see Blackwell, 1953; Strassen, 1965; Kolotilin, 2018) characterizes

which distributions of posterior means are feasible:

Proposition 6. G is feasible if and only if F ⪯ G.
19This allows for the sender’s payoff to depend on the action taken by the receiver.
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Any signal is a “garbling” of the prior, and thus, for any signal π, the prior F is a mean-

preserving spread of the generated distribution of posterior means Gπ, i.e. Gπ ⪰ F . For

the converse, suppose G is an extreme point of MPC(F ). Then we can construct a signal

that induces G: either you learn the state, there is pooling on an interval, or there is an

interval on which two realizations are sent (by inverting the mean-preserving spread). If G

is a convex combination of extreme points, we take the convex combination of the relevant

signals as the space of Blackwell experiments is closed under randomization; more generally,

arbitrary mixtures of experiments are also experiments.

Hence, formally, the sender’s problem is to choose a distribution over posterior mean

beliefs of the receiver G that solves:

max
G∈MPC(F )

∫ 1

0
v(x) dG(x) .

As the objective is linear, a maximum is attained at one of the extreme points characterized

in Theorem 2. This immediately implies that an optimal signal structure partitions the

states in intervals such that, in each interval:

1. Either all states are perfectly revealed.

2. Or states are pooled, so that only one (deterministic) signal is sent for all states in this

interval.

3. Or at most two different (potentially random) signals are sent for states in that interval,

inducing two possible posterior means on this interval.

Policies as the above have been called “bi-pooling” by Arieli et al. (2023). Thus, an

information policy corresponding to an extreme point is quite simple: it partitions the state

space into two sets, one of which is a union of disjoint open intervals ∪i(xi, xi). In the

complement of the union of intervals, the sender completely reveals the state. Whenever the

state is in one of the intervals (xi, xi), the sender reveals which interval it is in and provides

an additional (possibly uninformative) binary signal. While this binary signal is in general
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not unique, there always exists a simple partitional signal where, for each interval (xi, xi),

the designer picks a sub-interval in which he sends one signal, and sends the other signal in

the complement.

4.5 Optimal Delegation

Delegation problems arise whenever a principal must rely on a better-informed agent to make

decisions. The challenge is that the agent’s preferences may not align with the principal’s,

creating a fundamental trade-off between information extraction and control. The canonical

delegation model, developed by Holmström (1984) and refined by Melumad and Shibano

(1991), Alonso and Matouschek (2008), and Amador and Bagwell (2013), elegantly captures

this tension. Recent work has revealed that this problem shares the same mathematical

structure as our earlier applications: it reduces to choosing functions subject to majorization

constraints (Kleiner, Moldovanu, and Strack, 2021; Kolotilin and Zapechelnyuk, 2025). This

observation has led to new insights into which mechanisms optimally resolve the trade-off

between information extraction and control.

A principal must choose an action a ∈ R but the optimal choice depends on a state

θ ∈ [0, 1] known only to the agent, with prior distribution F : R → [0, 1]. The principal

can commit to a mechanism that maps the agent’s reports into (possibly random) actions.

Both parties have quadratic preferences centered at different bliss points; specifically, the

agent’s utility is uA(θ, a) = θa − 1
2a2 and the principal’s utility is uP (θ, a) = γ(θ)a − 1

2a2,

where γ : [0, 1] → R is continuous and captures the misalignment in preferences—if γ(θ) = θ,

preferences would be perfectly aligned. The principal believes that the state is distributed

according to a density f , and both players have expected utility preferences.

A mechanism m : R → ∆(R) assigns a lottery over actions to each report. By the reve-

lation principle, we can focus on incentive-compatible mechanisms where truthful reporting

is optimal.

To understand the connection to majorization, it is instructive to work with indirect
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utility functions instead of working with mechanisms directly. The agent’s indirect utility

from mechanism m is

Um(θ) := max
θ′

Ea∼m(θ′) [uA(θ, a)]

This function captures the payoff that each type expects from optimal reporting. The crucial

insight is that the set of achievable indirect utilities has a simple characterization:

Lemma 2. A function U is the indirect utility of a mechanism if and only if U is convex

and U(θ) ≤ h(θ) := 1
2θ2 for all θ ∈ R, where h(θ) is type-θ’s payoff under full discretion.

Proof sketch: It is easy to see that if U is the indirect utility of some mechanism, then U is

convex as a maximum of affine functions and that each type receives a weakly lower utility

than if she could choose her favorite action, so U ≤ h.

To develop intuition for the converse, observe that for any extreme point U of the set of

convex functions below h, we can easily construct a mechanism that has U as its indirect

utility: as observed in the proof of Theorem 2, there is a collection of disjoint open interval

(xi, xi) such that U coincides with h outside these intervals, and on each interval U consists

of at most three affine pieces, two of which are tangential to h at xi and xi, respectively.

This indirect utility is induced by allowing the agent to choose any action in the complement

of ⋃
i(xi, xi), and adding to this choice set at most one additional lottery over actions that

the agent could choose per each interval.

Because the set of convex functions below h is not compact, this argument does not

imply directly that every convex function below h is the indirect utility of some mechanism.

However, a direct argument that does not rely on the extreme point characterization is easily

available, see Lemma 1 in Kleiner (2025). Q.E.D.

To see the explicit majorization structure, consider mechanisms satisfying U(θ) = h(θ)

for all θ outside some interval [θ1, θ2]. If θ1 and θ2 are chosen small and large enough, this is a

mild assumption (recall that types outside [0, 1] have zero probability), one that is shown to

be without loss of optimality in Kolotilin and Zapechelnyuk (2025) and Kleiner, Moldovanu,
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and Strack (2021). This assumption ensures that the derivative of the indirect utility of any

mechanism satisfies U ′ ⪰ h′; since U ′ is also non-decreasing, U ′ ∈ MPC(h′). Conversely, for

every function in MPC(h′), its antiderivative is the indirect utility of an incentive-compatible

mechanism.

Using the assumption on the principal’s preferences, the objective becomes linear once

formulated in terms of indirect utilities. We obtain the following result:

Proposition 7. The principal’s problem can be stated as choosing a function in MPC(h′)

to maximize a linear objective function.

We mention three implications of this result: First, it implies optimal mechanisms are

relatively simple. In particular, optimal mechanisms involve at most one lottery per in-

terval of “excluded” actions. Second, it implies that the optimization results in Kleiner,

Moldovanu, and Strack (2021) can be employed to characterize optimal mechanisms in del-

egation models. Finally, the result implies that there is a close connection between this

delegation problem and the persuasion problem described in Section 4.4 because both share

the same mathematical structure. Kolotilin and Zapechelnyuk (2025) show that, as long as

types and actions are one-dimensional, the two problems are in fact equivalent even under

more general preferences than the ones considered here.

This equivalence breaks down in multiple dimensions, where the delegation problem no

longer admits a majorization formulation. Nevertheless, Kleiner (2025) shows that even then,

optimal delegation reduces to choosing convex functions below a given bound—the natural

multidimensional generalization of the framework described above.

4.6 Additional Applications

As an example of the more recent applications that have appeared in the literature, consider

Bergemann et al. (2022) who combine a classical allocation problem with an information

design problem. They derive the revenue-maximizing information structure in the classi-

cal second-price auction where bidders’ values follow the symmetric, independent values
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paradigm, and where the seller can provide signals about the bidders’ values such that each

bidder observes only information about his/her own value and such that there is no common

source of randomization in the signals. Finally, their seller is restricted to symmetric infor-

mation structures. The seller faces then a trade-off: providing more information improves

allocative efficiency but also induces higher information rents for bidders. Technically the

authors solve the following optimization problem:

max
G∈MPC(F )

∫ ∞

0
t d[nGn−1(t)(1 − G(t)) + Gn(t)]

where F is the prior distribution of values for each bidder, where n is the number of bidders

and where G is the posterior distribution induced by the seller’s information policy. Note

that

nGn−1(t)(1 − G(t)) + Gn(t)

represents here the distribution of the second order statistic out n random variables dis-

tributed according to G. The above maximization problem is not linear (and neither convex

nor concave) in G, and therefore it seems outside the scope of our methods. Nevertheless,

recalling that G ∈ MPC(F ) ⇔ G−1 ∈ MPS(F −1) a change of variable from G to G−1

transforms the optimization problem into

max
G−1∈MPS(F −1)

∫ 1

0
S

′

n(q)G−1(q)dq

where Sn(q) = nqn−1(1 − q) + qn is the quantile distribution of the second order statistic

(observe that this independent of G). The above transformed problem is now linear in G−1

and therefore it can be readily solved by the methods described above. The information

disclosure policy that maximizes the revenue of the seller is to fully reveal low values where

competition is relatively high but to pool high values where competition is relatively low.
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4.7 Additional Constraints

In some economic applications, other constraints are relevant, in addition to the monotonic-

ity and majorization constraints. Nikzad (2022) analyzes the extreme points of the set of

functions that are either in MPS(f) or in MPC(f) and satisfy finitely many additional linear

constraints (see also Candogan and Strack, 2023). These extreme points are closely related

to the extreme points characterized above: they can have up to one additional jump discon-

tinuity per each extra constraint. Nikzad (2022) then applies his results to auction problems

in which the designer has to satisfy additional constraints (e.g., the welfare generated by

the auction has to lie above some bound), to a redistribution problem based on Dworczak,

Kominers, and Akbarpour (2021), and to a procurement problem based on Gershkov et al.

(2021).

Taking a different but related approach, Augias and Uhe (2025) consider extreme points

of the set of convex functions that lie between two given convex functions and satisfy that

their subgradients lie in a given interval. To connect this to the majorization results above,

note that the two given convex functions can be taken to be the integrals of non-decreasing

functions f and g, where f ⪰ g. Thus, Augias and Uhe (2025) obtain as a special case of

their analysis a characterization of the extreme points of the set MPS(f) ∩ MPC(g) where

f ⪰ g. In words, these authors characterize extreme points of the set of functions that are

simultaneously mean-preserving spreads of some function f and mean-preserving contrac-

tions of some function g. They apply their results to delegation and persuasion problems

with outside options.

4.8 Multidimensional Extensions

While majorization elegantly captures various economic design problems in one-dimensional

spaces, the resulting notions in multidimensional spaces are more complex. One example

is the pair of delegation and persuasion problems that give rise to the same constraint set

MPC. To illustrate the differences between the corresponding problems in multidimensional
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settings, observe that our characterization above implies that the extreme points of the set

of convex functions that lie below a given convex function have a tractable structure in one

dimension. In contrast, in multidimensional spaces the set of extremal convex functions is

very large and is, in fact, dense in the set of convex functions (Johansen, 1974; Bronshtein,

1978; Lahr and Niemeyer, 2024). This implies that a mere characterization of the extreme

points loses many of the advantages we highlighted above, and shows that different ana-

lytical tools are required for multidimensional problems of this form (e.g., results on when

particular solutions are optimal instead of results on which solutions can be optimal). In a

principal-agent model with a multidimensional state space, Lahr and Niemeyer point to an

isomorphism between DIC mechanisms and delegation sets. The latter are convex subsets of

the set of lotteries called menus. In particular, a mechanism is an extreme point if and only

if the respective menu is an extreme point. Hence, properties of extreme mechanisms—that

appear as solutions to linear or convex optimization problems—can be directly translated

into geometric properties of the extreme points of the set of menus. Their main result char-

acterizes the extreme points of the set of DIC mechanisms for screening problems with linear

utility: such mechanisms are exhaustive, meaning that their menus cannot be scaled and

translated to make additional constraints binding. The characterization is of a geometric na-

ture, in terms of the combination of two properties called indecomposability and maximality

that were first studied by Gale (1954).

On the other hand, the characterization of the extreme points of the set of probability

distributions that are mean-preserving contractions of a given probability distribution can

be extended to multidimensional spaces. Moreover, these extreme points retain their rela-

tively simple structure that we observed in one dimension: every extreme point with finite

support is characterized by a partition of the state space into convex sets such that the

original distribution is contracted, on each partition element, to a probability distribution

with affinely independent support (Kleiner et al., 2024). An interesting feature that cannot

be gleaned from the unidimensional case is that convex partitions corresponding to exposed
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extreme points has an additional structure that turns it into a Laguerre (or power) diagram

of the type encountered in the theory of semi-discrete optimal transportation. These in-

sights also illustrate a fundamental difference between persuasion and delegation problems

in multidimensional spaces.

4.9 Alternative Orders

Moving beyond the majorization order, recent work has explored alternative ways to order

functions that arise naturally in economic applications. K. H. Yang and Zentefis (2024)

characterize the extreme points of the set of non-decreasing functions that lie pointwise

between two given non-decreasing functions. They apply their results to gerrymandering,

quantile-based persuasion (see also Kolotilin and Wolitzky, 2024), overconfidence, and secu-

rity design. Gershkov et al. (2025) use a similar extreme point characterization in order to

find the optimal monopolistic insurance contracts offered to privately informed agents who

have dual utility functions a la Yaari (1987).

F. Yang and K. H. Yang (2025) analyze non-decreasing functions f : [0, 1]n → [0, 1]

and their extreme points. They also analyze tuples of non-decreasing functions (q1, . . . , qn),

where qi : [0, 1] → [0, 1], such that there is a function f : [0, 1]n → [0, 1] whose ith marginal

is qi (that is,
∫

f(xi, x−i) dx−i = qi(xi)) and characterize the extreme points of this set.

They apply their results to analyze interim efficient mechanisms in bilateral trade, asym-

metric reduced form auctions, public good problems, and information design with privacy

constraints.

These extensions demonstrate both the versatility of the extreme point approach and the

rich variety of constraint structures arising in modern economic design problems.

35



Appendix

Lemma 3. Let X, Y be completely metrizable topological vector spaces and let T : X → Y be

affine, continuous, and onto. Then the inverse of T has a measurable selection. Moreover,

for any µ ∈ ∆(Y ) there exists ν ∈ ∆(X) such that
∫

g ◦ T dν =
∫

g dµ for all g such that

either integral exists.

Proof. T is an open mapping by Thm. 5.18 in Aliprantis and Border (2006). Therefore, its

inverse, denoted by S, is lower hemicontinuous (Thm. 17.7 in Aliprantis and Border, 2006).

It follows that S is weakly measurable (Def. 18.1 in Aliprantis and Border, 2006). Since T is

continuous and onto, S is closed-valued and nonempty-valued. By Thm. 18.13 in Aliprantis

and Border (2006), it has a measurable selection, denoted by s. We define the pushforward

of µ under s by ν(E) := µ(s−1(E)) for any Borel E ⊆ X. The claim follows from the change

of variable formula for the pushforward measure. Q.E.D.

Proof of Proposition 5. Let T be a stopping time such that MT ∧t is an uniformly integrable

martingale and let G denote its distribution. For any convex h, (h(Mt)) is a submartingale

and Doob’s optional stopping theorem implies
∫

h dG = Eh(MT ) ≥ Eh(M0) =
∫

h dF . Hence

G ∈ MPS(F ).

For the converse, let G be an extreme point of MPS(F ). By Theorem 1, there exists a

countable family {(xi, xi)}i∈I such that

G(x) =


F (x) if x /∈ ⋃

i∈I [xi, xi)∫ xi
xi

F (s) ds

xi−xi
if x ∈ [xi, xi).

(6)

Let A := R \ [⋃i(xi, xi)]. Then the following stopping time T satisfies MT ∼ G: T (ω, u) =

inf{t : Mt(ω) ∈ A}, that is, stop as soon as the process enters A.

If G is a convex combination of extreme points, then the corresponding convex combina-

tion of stopping times induces G as the distribution of the stopped process. For arbitrary
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G ∈ MPS(F ) there exists a probability distribution µ supported on the extreme points of

MPS(F ) that represents G. By Lemma 3, there is a corresponding distribution over stopping

times, and we can define the corresponding randomized stopping time. (Alternatively, we

can consider a sequence of convex combination of extreme points of MPS(F ) that converges

to G. The corresponding sequence of stopping times converges along a subsequence (Baxter

and Chacon, 1977), and the limits induces distribution G.) Q.E.D.
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Ob lój, Jan (2004). “The Skorokhod embedding problem and its offspring.” In: Probability
Surveys [electronic only] 1, pp. 321–392 (cit. on p. 26).

Quiggin, John (1982). “A theory of anticipated utility”. In: Journal of economic behavior &
organization 3.4, pp. 323–343 (cit. on p. 24).

Shaked, Moshe and J George Shanthikumar (2007). Stochastic orders. Springer (cit. on p. 21).
Shapiro, Alexander (2010). “On duality theory of conic linear problems”. In: Semi-Infinite

Programming: Recent Advances. Ed. by M. A. Goberna and M. A. Lopez. Springer, U.S.A.
(cit. on p. 10).

39



Strassen, Volker (1965). “The existence of probability measures with given marginals”. In:
The Annals of Mathematical Statistics 36.2, pp. 423–439 (cit. on pp. 22, 27).

Xiao, Peiran (2024). “Allocating Positional Goods: A Mechanism Design Approach”. In:
arXiv preprint arXiv:2411.06285 (cit. on pp. 19, 20).

Yaari, Menahem E (1987). “The dual theory of choice under risk”. In: Econometrica: Journal
of the Econometric Society, pp. 95–115 (cit. on pp. 24, 35).

Yang, Frank and Kai Hao Yang (2025). “Multidimensional Monotonicity and Economic Ap-
plications”. In: arXiv preprint arXiv:2502.18876 (cit. on p. 35).

Yang, Kai Hao and Alexander K. Zentefis (2024). “Monotone Function Intervals: Theory and
Applications”. In: American Economic Review 114.8, pp. 2239–70 (cit. on p. 35).

40


