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Why Voting? A Welfare Analysis†

By Moritz Drexl and Andreas Kleiner*

A committee decides collectively whether to accept a given proposal 
or to maintain the status quo. Committee members are privately 
informed about their valuations and monetary transfers are possible. 
According to which rule should the committee make its decision? 
We consider strategy-proof and anonymous mechanisms and solve 
for the decision rule that maximizes utilitarian welfare, which takes 
monetary transfers to an external agency explicitly into account. 
For regular distributions of preferences, we find that it is optimal 
to exclude monetary transfers and to decide by qualified majority 
voting. This sheds new light on the common objection that criticizes 
voting for its inefficiency. (JEL D71, D72, D82)

Majority voting is inefficient from a utilitarian perspective because the decision 
rule does not condition on preference intensities. Consider, for example, a 

municipality that decides whether to adopt a new law. Suppose a majority has a 
weak preference against the law, but there is a minority that strongly prefers the pro-
posed law. Even if implementing the law maximizes utilitarian welfare, the law will 
be defeated if the decision is made by majority voting. Can this municipality benefit 
from a more complex decision rule that enables voters to signal their preference 
intensities, for example, by allowing lobbying activities or even direct payments?

A specific suggestion is to implement the efficient decision rule (i.e., the one that 
always chooses the decision that is best from a utilitarian perspective) by using a 
Vickrey-Clarke-Groves (VCG) mechanism. However, if agents are privately informed 
this requires that agents make payments and it is well-known that these payments 
cannot balance the budget. Do agents prefer the efficient rule if they have to make 
payments in turn? We show that whenever an anonymous decision rule conditions 
on preference intensities, money is lost, which introduces a trade-off for the agents: 
they can choose a “good” decision rule, but then they will lose money. We study this 
trade-off and solve for the decision rule that maximizes utilitarian welfare in a class 
of plausible decision rules. Majority voting turns out to be optimal in our model.
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Our analysis follows standard models of collective decision making. A finite 
population of voters decides collectively whether to accept a given proposal or to 
maintain the status quo. Agents are privately informed about their valuations and 
have quasi-linear utilities. Monetary transfers are feasible as long as they create 
no budget deficit and as long as agents are willing to participate in the decision 
process. In contrast to much of the literature, we consider a utilitarian welfare 
function that takes monetary transfers to an external agency into account. We 
investigate which strategy-proof and anonymous mechanism maximizes expected 
utilitarian welfare. Strategy-proofness ensures that the rule can be robustly imple-
mented, while anonymity seems to be a reasonable fairness requirement for a 
society of equals.

Our main result provides conditions under which the optimal mechanism is imple-
mentable by qualified majority voting. Under such schemes, agents simply indicate 
whether they are in favor or against the proposal, and the proposal is accepted if the 
number of agents being in favor is above a predetermined threshold. This implies 
that even though it is possible to use monetary transfers, it is optimal not to use 
them. Specifically, we show that any anonymous decision rule that relies on mone-
tary transfers wastes money to such an extent that, for regular distributions of types, 
it is inferior to voting. In our model, it is therefore not possible to improve upon 
voting without giving up reasonable properties of the mechanism.

Our finding that voting performs well from a welfare perspective stands in 
sharp contrast to parts of the previous literature, which suggest implementing the 
value-maximizing public decision. However, this does not achieve the first-best 
because it induces budget imbalances (see, e.g., Green and Laffont 1979). While it 
is traditionally assumed that money wasting has no welfare effects, we consider a 
social planner that cares about aggregate transfers.1 Our approach seems reasonable 
for at least two reasons. First, a utilitarian planner is interested in implementing the 
decision rule that maximizes the agents’ expected utility. Since agents care about 
money, the planner in turn cares about aggregate transfers. Second, groups often 
choose the rule by which they decide themselves, and when making this choice they 
take the payments they have to make into account. Hence, our approach character-
izes decision rules that are likely to prevail in practice.

Our derivation that transfer-free voting schemes dominate more complex deci-
sion rules can be summarized as follows. To prevent agents from overstating their 
preference intensities, one has to impose incentive payments whenever a decision 
rule conditions on preference intensities. Strategy-proof implementation severely 
restricts how these payments can be redistributed to the agents: the redistribution 
payment an agent receives must not depend on his own reported preference. For 
anonymous decision rules, we show that this restriction prevents any redistribution; 
hence, all incentive payments that are collected to induce truthful reports have to be 
wasted. This implies as a corollary that an anonymous mechanisms is implementable 

1 An early exception is Tideman and Tullock (1976), who argue that the budget imbalances of VCG mechanisms 
are not important because they vanish as the populations grow and, hence, are quantitatively negligible in many 
practical applications. We review their argument in Section III. Note that the nature of the objective function would 
be irrelevant if we considered Bayesian incentive compatible mechanisms, as the expected externality mechanism 
(d’Aspremont and Gérard-Varet 1979; Arrow 1979) achieves the first-best in our setting with a balanced budget. 
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with a balanced budget if and only if it can be implemented by qualified majority 
voting. The result that no money can be redistributed fixes the trade-off between 
increasing efficiency of the public decision and reducing the waste of monetary 
resources. For regular distribution functions, we show that this trade-off is solved 
optimally by not using money at all. This implies that the optimal mechanism is 
implementable by qualified majority voting. We characterize the minimum number 
of votes that is optimally required for the adoption of the proposal.

Related Literature.—The literature evaluating public decision rules by the util-
itarian criterion was initiated by Rae (1969), who compares expected welfare of 
different voting rules and shows that simple majority voting (where a proposal is 
accepted if at least half of the population votes for it) is optimal if preferences are 
symmetric across outcomes. Recently, this approach was generalized using insights 
from the mechanism design literature to include more general decision rules (Azrieli 
and Kim 2014), to allow for correlated valuations (Schmitz and Tröger 2012), and 
to consider environments with more than two alternatives (Gershkov, Moldovanu, 
and Shi 2016). While we extend this approach to allow for monetary transfers, the 
resulting optimal decision rules relate our study to this literature.

Our results contribute to studies that try to explain why voting rules are used 
instead of mechanisms that rely on transfers. Bierbrauer and Hellwig (2016) argue 
that voting rules are unique in being robust and coalition-proof. Ledyard and Palfrey 
(2002) argue that voting rules are easy to implement and show that they approxi-
mate the efficient decision rule in large populations. In contrast, our results also 
apply for fixed finite populations.

In independent work, Shao and Zhou (2016b) analyze the optimal mechanism 
for the provision of a costly public good. They show that equal cost sharing mech-
anisms are optimal (in expectation) among dominant-strategy incentive compatible 
and feasible mechanisms that satisfy an additional kindness axiom. Our results are 
not logically related (anonymous mechanisms do not necessarily satisfy their kind-
ness axiom, the pivot mechanism being a counterexample; a “kind” mechanism need 
not be anonymous on the other hand). However, our results are related in spirit. Both 
papers (our paper and Shao Zhou 2016b) show that if there is a trade-off between 
balancing the budget or having a more efficient decision rule, it is often preferable to 
balance the budget. In addition we provide results for general (and potentially cor-
related) type distributions and on ex post dominance. Recently, Kuzmics and Steg 
(2017) study public good provision in a related setting, but impose a stronger par-
ticipation constraint. This constraint (in combination with their budget constraint) 
rules out VCG mechanisms and nonunanimous voting rules, which are optimal in 
our environment. They find that the welfare maximizing mechanism can be imple-
mented by unanimity voting with a fixed cost sharing rule.

Our modeling approach is related to a small part of the literature that evaluates 
allocation rules for the allocation of a private good according to an average effi-
ciency criterion and considers money burning to be welfare reducing (Drexl and 
Kleiner 2015; Shao and Zhou 2016a; Miller 2012). An alternative criterion to eval-
uate allocation rules is to rank them in terms of their worst-case efficiency (see, for 
example, Sprumont 2013, Moulin 2010, Deb and Seo 1998).
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Serizawa (1999) studies more general public good economies in which agents 
have general utility functions and the public good is a continuous choice. He charac-
terizes mechanisms that are strategy-proof, budget-balancing, and satisfy additional 
symmetry restrictions. Instead, we do not impose budget balance and are interested 
in under what conditions the optimal mechanism will be budget balanced.

Studying mechanisms that are Bayesian incentive compatible, it has long 
been known that improvements over voting rules are possible: d’Aspremont and 
Gérard-Varet (1979) provide an efficient mechanism that is Bayesian incentive 
compatible and ex post budget balanced. Therefore, the tradeoff between inefficient 
decisions and loss of money would not emerge if we imposed interim incentive and 
participation constraints instead. More recently, Lalley and Weyl (2016) propose 
a mechanism that approximates the first-best in Bayesian-Nash equilibrium. Our 
results contrast these contributions by showing that improvements over voting are 
often not possible if a more robust equilibrium concept is imposed.

The paper is structured as follows. We present the model in Section I, derive our 
main results in Section II, and discuss the role of the assumptions in Section III.

I.  Model

A population of ​n​ agents, ​N  =  {1, … , n}​ , decides collectively on a binary out-
come ​X  ∈  { 0, 1}​. We interpret this as agents deciding whether they accept a pro-
posal (in which case ​X  =  1​) or reject it and maintain the status quo (​X  =  0)​. 
Given a collective decision ​X​ , the utility of agent ​i​ is given by ​​θ​i​​ · X + ​t​i​​​ , where ​​
θ​i​​​ is the agent’s valuation for the proposal and ​​t​i​​​ is a transfer to agent ​i​.2 Each 
agent is privately informed about his valuation, which is drawn from a type space  
​Θ  ≔ ​ [​θ _​, ​

_
 θ​]​​. To make the problem interesting we assume that ​​θ _​  <  0  < ​

_
 θ​​. Let ​​

Θ​​ n​​ denote the product type space consisting of complete type profiles with typical 
element ​θ  =  (​θ​i​​ , ​θ​−i​​)​.

A mechanism in this setting determines for which preference profiles the pro-
posal is accepted and which transfers are made to the agents. Invoking the revelation 
principle (Gibbard 1973), we focus on direct mechanisms. Formally, a mechanism is 
a pair ​(x, t)​ consisting of a decision rule

	​ x : ​Θ​​ n​  →  { 0, 1}​

and a transfer rule

	​ t : ​Θ​​ n​  → ​ ℝ​​ n​​ ,

such that, for any realized preference profile ​θ​ , ​x(θ)​ is the decision on the public 
outcome and ​​t​i​​ (θ)​ is the transfer received by agent ​i​.

2 Our analysis applies to costless projects as well as to costly projects with a given payment plan, in which case 
the valuation of agent ​i​ is interpreted as her net valuation taking her contribution into account. Also note that the 
analysis accommodates more general utility functions: Take any quasi-linear utility function such that the utility 
difference between ​X  =  1​ and ​X  =  0​ is continuous and strictly increasing in ​​θ​i​​​ . Redefining the type to equal the 
utility difference, we can proceed with our analysis without change. 
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Not all mechanisms can plausibly be implemented. In the following, we describe 
several restrictions on the mechanisms that we consider.

We require that mechanisms are feasible in the sense that for any realization of 
preferences no injection of money from an external agency is necessary, i.e., for all ​
θ  ∈ ​ Θ​​ n​​,

(F)	​ ​ ∑ 
i∈N

​​​ ​t​i​​ (θ)  ≤  0.​

Given that preferences are observed privately by the agents, a mechanism must 
induce the agents to report their types truthfully. We are interested in mechanisms 
that are strategy-proof: for every ​i​ , ​​θ​i​​​ , ​​θ​ i​ ′ ​​ , and ​​θ​−i​​​ ,

	​ ​θ​i​​ x (​θ​i​​ , ​θ​−i​​) + ​t​i​​ (​θ​i​​ , ​θ​−i​​)  ≥ ​ θ​i​​ x (​θ​ i​ ′ ​ , ​θ​−i​​) + ​t​i​​ (​θ​ i​ ′ ​ , ​θ​−i​​).​

This is a strong equilibrium concept that ensures that the mechanism is incentive 
compatible implemented irrespective of the exact information structures. Requiring 
strategy-proofness is a standard approach in social choice theory (see, e.g., Moulin 
1983) and implies robust implementation in the spirit of Bergemann and Morris 
(2005) (see Bierbrauer and Hellwig 2016).

In many situations agents have the outside option to abstain from the decision 
process and leave the decision to the other agents. In this case, they cannot be 
forced to make payments that relate to the decision process; however, agents are 
nonetheless affected by the public outcome. Therefore, the choice of the outcome 
if agent ​i​ does not participate in the decision process becomes part of the design 
problem. Formally, the designer can choose a tuple of functions ​​​{(​​ x _ ​​​ i​, ​​ t _ ​​​ i​  )}​​i∈N​​​ with  
​​​ x _ ​​​ i​ : ​Θ​​ −i​  →  { 0, 1}​ and ​​​ t _ ​​​ i​ : ​Θ​​ −i​  → ​ ℝ​​ n​​, such that ​​​ t _ ​​ i​ i​  ≡  0​ , which specify the out-
come in case agent ​i​ abstains.3 We say that a mechanism ​(x, t)​ satisfies universal 
participation if there exists a tuple ​​{ (​​ x _ ​​​ i​, ​​ t _ ​​​ i​)}​i∈N​​​, such that it is an ex post equilibrium 
for all agents participating in the mechanism ​(x, t)​: for all ​i  ∈  N​ and ​θ  ∈ ​ Θ​​ n​​ ,

(UP)	​ ​θ​i​​ x (θ)  + ​t​i​​ (θ)  ≥ ​ θ​i​​ ​​ x _ ​​​ i​ (​θ​−i​​), ​

and we impose that mechanisms satisfy universal participation.4 Note that by giving 
the designer freedom in choosing ​{ (​​ x _ ​​​ i​, ​​ t _ ​​​ i​)}​ we allow the designer to choose a pub-
lic outcome trying to punish a given agent for nonparticipation, which makes the 
participation constraint potentially weaker. We will show below (see the proof of 
Lemma 2) that the designer is not going to abuse this freedom in choosing implau-
sible punishment schemes; to induce participation it will be sufficient to set ​​​ x _ ​​i​​ (​θ​−i​​)  
=  x(0, ​θ​−i​​)​. This participation constraint turns out to be weaker than the requirement 
that every agent derives utility of at least zero (often called individual rationality) 

3 Note that we do not impose any restrictions on these functions. We will show below that the designer can 
choose these functions without loss to be strategy-proof and anonymous. 

4 We will show in footnote 7 how any mechanism satisfying universal participation can be extended so that 
participation becomes a dominant strategy. 
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and better suited for public good environments (see Green and Laffont 1979). For 
instance, majority voting and the pivotal mechanism satisfy universal participation, 
but in general are not individually rational.5

We also require mechanisms to be anonymous.

DEFINITION 1: We call a mechanism ​(x, t)​ anonymous if the decision rule is 
independent of the agents’ identities, i.e., if for each permutation ​π : N  →  N​ and 
corresponding function ​​π ˆ ​(θ)  =  (​θ​π(1)​​ , … , ​θ​π(n)​​)​ , it holds that ​x(θ)  =  x(​π ˆ ​(θ))​ for 
all ​θ​.

This is a weak notion of anonymity, requiring only that the names of the agents do 
not affect the public decision. One reason to impose anonymity is that many fairness 
concepts build on this assumption (e.g., equal treatment of equals). This require-
ment has a long tradition in social choice theory; see, for example, Moulin (1983).6

Throughout the paper we focus on feasible and strategy-proof mechanisms that 
are anonymous and satisfy universal participation.

II.  Results

In this section, we characterize strategy-proof mechanisms and derive an import-
ant auxiliary result about redistribution payments (Section IIA). Using this result, 
we show that simple majority voting is an ex post dominant mechanism and that 
qualified majority voting maximizes ex ante expected welfare (Section IIA).

Characterization of Mechanisms.—The following lemma is a standard character-
ization of strategy-proof mechanisms and we omit its proof.

LEMMA 1: A mechanism is strategy-proof if and only if, for each agent ​i​ :

	 (i)	 ​x(​θ​i​​ , ​θ​−i​​)​ is nondecreasing in ​​θ​i​​​ for all ​​θ​−i​​​ and

	 (ii)	 there exists a function ​​h​i​​ (​θ​−i​​)​ , such that for all ​θ​ ,

		  (1)    ​  ​t​i​​ (​θ​i​​ , ​θ​−i​​)  =  − ​θ​i​​ x (​θ​i​​ , ​θ​−i​​) + ​∫ 
0
​ 
​θ​i​​​​ x(β, ​θ​−i​​) dβ + ​h​i​​ (​θ​−i​​).​

We call the first two terms on the right-hand side the “incentive payment” and the 
last term “redistribution payment.”

5 The unique voting rule that is individually rational is unanimity voting, where the proposal is accepted if and 
only if all agents vote for the proposal. Our analysis implies that it is optimal to decide by unanimity voting if we 
impose individual rationality instead. 

6 Note that this assumption would be without loss of generality if we allowed for stochastic decision rules. Given 
any mechanism ​(x, t)​ , apply this function after randomly permuting the agents. This defines a new mechanism ​(​x ̃ ​, ​t ̃ ​ )​  
that is anonymous and achieves the same utilitarian welfare. While this new rule treats all agents equally ex ante, it 
is possible that agents with the same valuations are treated very differently ex post. Experimental evidence suggests 
that agents value not only ex ante fairness, but also ex post fairness (Brock, Lange, and Ozbay 2013; Cappelen et al. 
2013), which makes mechanisms that are deterministic and anonymous attractive. 
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Equation (1) suggests the following definition:

DEFINITION 2: Agent ​i​ is pivotal at profile ​θ​ if there is an ​​_ ε​  >  0​, such that ​
x(θ)  ≠  x(ε, ​θ​−i​​)​ for all ​ε  ∈  (− ​_ ε​, ​_ ε​)​.

If agent ​i​ is not pivotal at a given profile ​(​θ​i​​ , ​θ​−i​​)​, then her payment equals  
​​h​i​​ (​θ​−i​​)​: for any ​​_ ε​  >  0​ there exists ​ε  ∈  (− ​_ ε​, ​_ ε​)​, such that ​x(θ)  =  x(ε, ​θ​−i​​)​; since ​
x( · , ​θ​−i​​)​ is nondecreasing this implies ​​θ​i​​ x(​θ​i​​ , ​θ​−i​​)  = ​ ∫ 0​ ​θ​i​​​​ x(β, ​θ​−i​​) dβ​. If an agent is 
pivotal, her transfer is reduced by the incentive payment.

The following lemma implies that redistribution payments are equal to zero for 
the mechanisms under consideration.

LEMMA 2: Consider a strategy-proof and anonymous mechanism ​(x, t)​. ​(x, t)​  
is feasible and satisfies universal participation if and only if ​​h​i​​ (​θ​−i​​)  =  0​ for all ​i​ 
and ​​θ​−i​​​ .

To obtain that ​​h​i​​ (​θ​−i​​)​ is necessary, we use in a first step anonymity to argue that 
for any profile of reports ​​θ​−i​​​  there is a report by agent ​i​, such that no agent is pivotal. 
This implies that all redistribution payments are zero. Suppose for a contradiction 
that there is a report profile ​​θ​−i​​​, such that agent ​i​ receives a strictly positive redis-
tribution. From the previous step we know that there is a profile ​(​θ​i​​ , ​θ​−i​​)​, such that 
no agent makes an incentive payment, and since the redistribution payment of agent ​
i​ does not depend on ​​θ​i​​​ (Lemma 1), it is strictly positive at this profile. However, 
due to universal participation each redistribution payment has to be weakly positive 
and feasibility requires that their sum is weakly negative, which yields the desired 
contradiction.

PROOF: 
Suppose ​​h​i​​ (​θ​−i​​)  =  0​ for all ​i​ and ​​θ​−i​​​. Then ​​t​i​​ (θ)  ≤  0​ for all ​i​ and ​θ​  and, hence, ​

(x, t)​ is feasible. Defining ​​​ x _ ​​​ i​ (​θ​−i​​)  ≔  x(0, ​θ​−i​​)​ and ​​​ t _ ​​​ i​ (​θ​−i​​)  ≔  t(0, ​θ​−i​​)​ for each ​i​ 
and ​​θ​−i​​​, and using incentive compatibility, we get:

	​ ​θ​i​​ x (​θ​i​​ , ​θ​−i​​) + ​t​i​​ (​θ​i​​ , ​θ​−i​​)  ≥ ​ θ​i​​ x (0, ​θ​−i​​) + ​t​i​​ (0, ​θ​−i​​)  = ​ θ​​ i​ ​​ x _ ​​​ i​ (​θ​−i​​).​

Hence, ​(x, t)​ satisfies universal participation.
The proof of the converse consists of two steps. Suppose ​(x, t)​ is feasible and 

satisfies universal participation.

Step 1: For all ​i​ and ​​θ​−i​​​ , there exists ​​θ​i​​​, such that no agent is pivotal at ​(​θ​i​​ , ​θ​−i​​)​.
Note first that all agents that are pivotal at profile ​θ​ submit reports of the same 

sign. If ​x(θ)  =  1​, then monotonicity implies that ​x(0, ​θ​−i​​)  =  1​ for all agents ​i​ with ​​
θ​i​​  <  0​ and, hence, only agents with positive reports can be pivotal (and similarly 
for ​x(θ)  =  0​).

Fix an arbitrary agent ​i​ and a report profile ​​θ​−i​​  ∈ ​ Θ​​ n−1​​. Suppose ​x(0, ​θ​−i​​)  =  1​ 
and, hence, that all pivotal agents submit positive reports (if no agent is pivotal at 
this profile, we are done; if ​x(0, ​θ​−i​​)  =  0​ analogous arguments hold). We show that 
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no agent is pivotal at profile ​θ  ≔  (​θ​​j​​ ∗​​​ , ​θ​−i​​)​ , where ​​j​​ ∗​​  ∈  arg ma​​x​j​​​ ​​θ​j​​​ . Monotonicity 
implies that ​x(θ)  =  x(0, ​θ​−i​​)  =  1​ and, hence, agent ​i​ is not pivotal. Anonymity 
implies that agent ​​j​​ ∗​​ is not pivotal.

It remains to show that if ​j​ is not pivotal at ​θ​ and ​​θ​​j​​ ′​​​  ≤ ​ θ​j​​​ , then ​j′​ is not pivotal 
at ​θ​. Assume to the contrary that ​j​′ is pivotal at ​θ​; hence, ​x(θ)  =  1​ and ​x(ε, ​θ​−​j ​​ ′​​​)  
=  0​ for some ​ε  >  0​. If ​​​π ˆ ​​j, ​j ​​ ′​​​ : ​Θ​​ n​  → ​ Θ​​ n​​ is the function permuting the ​j​ th and  
​j′​ th component, then ​​​π ˆ ​​j, ​j ​​ ′​​​ [(ε, ​θ​−j​​)]  ≤  (ε, ​θ​−​j ​​ ′​​​)​. From monotonicity it follows that  
​x​(​​π ˆ ​​j, ​j ​​ ′​​​ [ (ε, ​θ​−j​​)])​  =  0​ and anonymity implies that ​x(ε, ​θ​−j​​)  =  0​ , contradicting the 
assumption that ​j​ is not pivotal at ​θ​.

Step 2: For all ​i​ and ​​θ​−i​​​, we have ​​h​i​​ (​θ​−i​​)  =  0​.
Universal participation immediately implies that an agent with valuation ​0​ gets a 

weakly positive utility: ​0 · x(0, ​θ​−i​​) + ​t​i​​ (0, ​θ​−i​​)  ≥  0 · ​ x _ ​(​θ​−i​​)​. From (1) it follows 
that ​​h​i​​ (​θ​−i​​)  ≥  0​ for all ​i​ , ​​θ​−i​​​ . To obtain a contradiction, suppose that there exists 
an agent ​j​ and a report profile ​​θ​−j​​  ∈ ​ Θ​​ n−1​​, such that ​​h​j​​ (​θ​−j​​)  >  0​. By step one, we  
can choose ​​θ​j​​​, such that no agent is pivotal at ​θ  ≔  (​θ​j​​ , ​θ​−j​​)​ , implying by (1)  
that ​​∑ i​ 

  ​​ ​t​i​​ (θ)  = ​ ∑ i​   ​​ ​h​i​​ (​θ​−i​​)  >  0​ , which contradicts feasibility. ∎

For any strategy-proof and anonymous mechanism ​(x, t)​ satisfying ​​h​i​​ (​θ​−i​​)  =  0​ 
for all ​i​ and ​​θ​−i​​​ , we will from now on assume implicitly that any nonparticipating 
agent is treated as if she reported zero. Therefore, participating in the mechanism is 
essentially a dominant strategy.7

Majority Voting.—An indirect mechanism is called qualified majority voting 
(with threshold ​k​) if each agent has the message set ​{ yes, no}​ and the proposal is 
implemented if and only if at least ​k​ agents send message yes and no monetary 
transfers are made, i.e., ​​t​i​​ (θ)  =  0​ for all ​i​ and ​θ​. It is called simple majority voting 
if ​k  =  n/2​ .

As an easy consequence, Lemma 1 and Lemma 2 permit a characterization of the 
set of mechanisms that have a balanced budget.

COROLLARY 1: A feasible, strategy-proof, and anonymous mechanism satisfying 
universal participation has a balanced budget if and only if it is implementable by 
qualified majority voting.

PROOF: 
By Lemmas 1 and 2, the budget is balanced if and only if no agent is pivotal. This 

implies that the decision rule is constant in the interior of each orthant. Consequently, 
the decision rule can be implemented via qualified majority voting. ∎

A related result has been obtained by Laffont and Maskin (1982), who in addition 
require weak Pareto efficiency but do not impose participation constraints.

7 Formally, if a group ​C  ⊆  N​ abstains, the mechanism ​(​x​​ C​, ​t​​ C​)​ defined by ​​x​​ C​ (​θ​−C​​)  =  x (0, ​θ​−C​​)​ and  
​​t​​ C​ (​θ​−C​​)  =  t (0, ​θ​−C​​)​ is used for the participating agents. This implies, in particular, that the mechanisms used if 
not all agents participate are strategy-proof and anonymous. 
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DEFINITION 3: A mechanism ​(x, t)​ dominates another mechanism ​(x′, t′  )​ if, for 
every ​θ​ , a majority of the agents prefers the outcome of mechanism ​(x, t)​ compared 
to the outcome of mechanism ​(x′, t′  )​. Formally, for all ​θ​ ,

	​ # { i | ​θ​i​​ x (θ) + ​t​i​​ (θ)  ≥ ​ θ​i​​ x′(θ) + ​t​ i​ ′ ​ (θ)}  ≥ ​  n __ 
2
 ​​ .

Groves and Ledyard (1977) showed that simple majority voting dominates the 
pivotal mechanism in a public good setting with logarithmic utilities, and Ledyard 
(2006) obtained the same result for the model we study. Lemma 2 also allows us to 
extend this result to a much larger class of mechanisms.

COROLLARY 2: Let ​(x, t)​ be any feasible and strategy-proof mechanism that is 
anonymous and satisfies universal participation. Then simple majority voting dom-
inates ​(x, t)​.

PROOF: 
Lemma 2 implies that ​​t​i​​ (θ)  ≤  0​ for all ​i​ and ​θ​. Under simple majority voting, 

there is always a majority that gets its preferred alternative. These agents are weakly 
worse off under mechanism ​(x, t)​  because they make weakly positive payments and 
potentially get their less preferred alternative. ∎

Corollary 2 shows that if agents have precise information about each other when 
choosing among feasible, anonymous, and strategy-proof mechanisms that satisfy 
universal participation, then simple majority voting is always weakly preferred by a 
majority. For some settings, this might explain why simple majority voting is used.

Utilitarian Social Planner.—The above result takes an ex post dominance per-
spective and therefore does not take preference intensities into account. Even though 
there will always be a majority that ex post prefers the outcome of simple majority 
voting, this does not imply that agents would choose majority voting from an ex ante 
viewpoint (because the minority preferring a different mechanism might have stron-
ger preferences). Therefore we take an ex ante perspective in this section and study 
a utilitarian planner who chooses a mechanism to maximize expected utilitarian 
welfare given by

	​ U​(x, t)​  ≔ ​ E​θ​​ ​[​ ∑ 
i=1

​ 
N

 ​​ [​θ​i​​ x (θ) + ​t​i​​ (θ)]]​​.

The expectation is taken with respect to the beliefs of the planner about ​θ​. We 
assume the planner believes that types are independently distributed according to a 
distribution function ​F​ that admits a strictly positive density ​f​. Note that the plan-
ner’s beliefs do not affect the incentives of the agents (as we focus on robust imple-
mentation), but only how she evaluates different rules. A mechanism is optimal if it 
maximizes this expression.
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We concentrate first on distribution functions that satisfy the following condition.

DEFINITION 4: A distribution function ​F​ has increasing hazard rates if ​​ 
f (​θ​i​​) ______ 

1 − F(​θ​i​​)
 ​​ is 

nondecreasing for ​​θ​i​​  ≥  0​ and ​− ​ 
f (​θ​i​​) ___ 
F(​θ​i​​)

 ​​ is nondecreasing for ​​θ​i​​  ≤  0​.

This assumption is well-known from the literature on optimal auctions and pro-
curement auction design. It is satisfied by many commonly employed distribu-
tion functions, for example, by the uniform, (truncated) normal, and exponential 
distributions.

We are now ready to state our main result.

THEOREM 1: Suppose ​F​ has increasing hazard rates and consider the class of 
feasible and strategy-proof mechanisms that are anonymous and satisfy universal 
participation. The optimal mechanism in this class is implementable by qualified 
majority voting with threshold ​​⌈k⌉​​ , where

	​ k  ≔ ​ 
− n E [​​θ​i​​ |​ ​θ​i​​  ≤  0]

   ________________________   
E [​​θ​i​​ |​ ​θ​i​​  ≥  0] − E [​​θ​i​​ |​ ​θ​i​​  ≤  0] ​​ .

That is, the optimal decision rule does not rely on monetary transfers at all and 
can be implemented using a simple indirect mechanism where each agent indicates 
whether she is in favor or against the proposal. The proposal is accepted if more than ​​
⌈k⌉​​ voters are in favor.8

The following example illustrates how voting mechanisms compare to the 
first-best and the pivotal mechanism.

Example 1: Let ​n  =  2​ and ​​θ​i​​​ be independently and uniformly distributed on ​
[−3, 3]​ for ​i  =  1, 2​.

If valuations were publicly observable, the first-best could be implemented, 
which would yield welfare ​​U​FB​​  = ​  1 _ 2 ​ E [​θ​1​​ + ​θ​2​​ | ​θ​1​​ + ​θ​2​​  ≥  0]  =  1​. The best 
mechanism that decides efficiently is the pivotal mechanism, where each agent pays 
the externality she creates on other agents. It gives a welfare of ​​U​VCG​​  =  1/2​ (see 
the Appendix). Unanimity voting, that is, accepting the proposal if and only if both 
agents have a positive valuation, is an optimal voting rule (as is the voting rule that 
rejects the proposal if and only if both agents have a negative valuation). These rules 
yield welfare ​​U​UV​​  = ​  1 _ 4 ​ E [​θ​1​​ + ​θ​2​​ | ​θ​1​​  ≥  0, ​θ​2​​  ≥  0]  =  3/4​ . Hence, the welfare 
loss due to private information is twice as large under the best VCG mechanism as 
compared to unanimity voting.

The role of the underlying assumptions is discussed in Section III and a formal 
proof for Theorem 1 is provided in the Appendix. We now build some intuition for 
this result.

8 This indirect implementation also alleviates the commitment problem of the planner. Given the information 
she obtains in this mechanism, the decision rule promised to the agents is optimal. 
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Lemma 2 shows that money cannot be redistributed in strategy-proof mechanisms 
that are feasible, anonymous, and satisfy universal participation, and, hence, there 
is a direct trade-off between improving the decision rule and reducing the outflow 
of money. We show that under increasing hazard rates, this conflict is resolved opti-
mally in favor of no money burning. To gain some intuition, fix a type profile of the 
other agents, ​​θ​−i​​​ . Strategy-proofness implies that there is a cutoff ​​θ​ i​ ∗​​, such that the 
proposal will be accepted if the type of agent ​i​ is above ​​θ​ i​ ∗​​. To solve for the optimal 
decision rule we need to find the optimal cutoff. Assume that ​​∑ j≠i​ 

  ​​ ​ θ​j​​ + ​θ​ i​ ∗​  <  0​ and ​​
θ​ i​ ∗​  >  0​. Marginally increasing the cutoff leads to a rejection of the proposal, which 
in this case increases efficiency (with a positive effect on welfare proportional to  
​f (​θ​ i​ ∗​)​). On the other hand, strategy-proofness implies that agents with a type above 
the cutoff make a payment equal to the cutoff. Increasing the cutoff increases 
these payments (with a corresponding negative effect on welfare proportional to  
​1 − F(​θ​ i​ ∗​)​). Monotone hazard rates imply that if the positive effect outweighs the 
negative effect at ​​θ​ i​ ∗​​ and if it is therefore beneficial to marginally increase the cutoff, 
then it is optimal to set the cutoff to the highest possible value. Symmetric argu-
ments imply that it is optimal to set all cutoffs either equal to zero or to the boundary 
of the type space, and, hence, that the optimal mechanism can be implemented by 
a voting rule.

The optimal number of votes required in favor of a proposal is given by the 
smallest integer number ​k​, such that the expected aggregate welfare of a proposal, 
given that ​k​ out of ​n​ voters have a positive valuation, is positive. Hence, the optimal 
threshold required for qualified majority voting depends on the conditional expected 
values given that the valuation is either positive or negative. Simple majority vot-
ing is optimal if valuations are distributed symmetrically around zero. If, however, 
opponents of a proposal are expected to have a stronger preference intensity, then it 
is optimal to require a qualified majority that is larger than simple majority.

General Distributions and Correlated Types.—In this section, we generalize our 
analysis in two directions. First, we allow for more general distribution functions, 
not only those having increasing hazard rates. Second, we relax the assumption that 
the planner knows perfectly the type distribution. If types are drawn independently, 
conditionally on some unknown state of the world, but the distribution depends on 
the state of the world, this potentially creates correlated types from the planner’s 
perspective. Therefore, we first state the general optimization problem allowing for 
correlated types. Lemma 2 still applies and shows that all redistribution payments 
are equal to zero. Hence, in analogy to Lemma 3 in the Appendix, we can state the 
problem as

	​​  max​ 
0≤x≤1

​ ​ ​ ​ ∫ 
​
​ ​​​ ​[​∑ 

i
​ ​​ Ψ (​θ​i​​ | ​θ​−i​​)]​x (θ) dG (θ)

subject to

	 x being point-wise nondecreasing,​
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where ​G​ denotes the joint distribution function (and ​g​ its density) and

	​ Ψ (​θ​i​​ | ​θ​−i​​)  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​
− ​ 

G (​θ​i​​ | ​θ​−i​​) _______ 
g (​θ​i​​ | ​θ​−i​​)

 ​
​ 

if ​θ​i​​  <  0

​   
​ 1 − G (​θ​i​​ | ​θ​−i​​)  __________  

g (​θ​i​​ | ​θ​−i​​)
 ​

​ 

if ​θ​i​​  ≥  0

​​​ .

If types are independently distributed (that is, if ​G(θ)  = ​ ∏ i​ ​​ F (​θ​i​​)​), and if ​F​ has 
decreasing hazard rates, then the monotonicity constraint is not binding and conse-
quently the efficient decision rule is optimal and can be implemented by the pivot 
mechanism. More generally, as long as types are independently distributed, a stan-
dard ironing procedure can be used to determine the optimal decision rule.

While standard procedures cannot be applied if types are not independently dis-
tributed, we can immediately deduce the optimal mechanism in two special cases. 

First, if the conditional hazard rates are decreasing (​− ​ 
G(​θ​i​​ | ​θ​−i​​) ______ 
g(​θ​i​​ | ​θ​−i​​)

 ​​ and ​​ 
1 − G(​θ​i​​ | ​θ​−i​​)  _________ 

g(​θ​i​​ | ​θ​−i​​)
 ​ ​ are 

nondecreasing for each ​​θ​−i​​​) and types are affiliated, then the pivotal mechanism is 
optimal. Affiliation implies that an increase in ​​θ​i​​​ increases ​Ψ(​θ​j​​ | ​θ​−j​​)​ for all ​j​ (see, 
for example, Segal 2003) and, hence, that the monotonicity constraint is not bind-
ing. Analogously, one can show that if the conditional hazard rates are increasing 
and types are negatively affiliated, then a voting mechanism is optimal.

These results are not fully satisfying because both negatively affiliated types and 
decreasing hazard rates are strong assumptions. If types are positively affiliated and 
the conditional distributions have increasing hazard rates, then the optimal mecha-
nism usually depends on the details of the distribution function. To gain additional 
insights, we analyze the problem that arises if the planner has imperfect information 
about the distribution from which types are drawn. Specifically, we assume that 
there are finitely many states of the world, ​ω  ∈  Ω​ , and that types are drawn inde-
pendently conditional on the state ​ω​ from a distribution function ​​F​ω​​​ .

COROLLARY 3: Suppose that ​​F​ω​​​ has increasing hazard rates and that  
​​E​​F​ω​​​​ [​θ​i​​ | ​θ​i​​  >  0]  = ​ E​​F​​ω​​ ′​​​​​ [ ​θ​i​​ | ​θ​i​​  >  0]​ and ​​E​​F​ω​​​​ [​θ​i​​ | ​θ​i​​  <  0]  = ​ E​​F​​ω​​ ′​​​​​ [​θ​i​​ | ​θ​i​​  <  0]​ for 
all ​ω, ω′  ∈  Ω​. Then qualified majority voting is optimal among all feasible and 
strategy-proof mechanisms that are anonymous and satisfy universal participation.

Under the assumptions made in the corollary, uncertainty about the state of the 
world only affects the expected number of supporters of status quo but not the 
expected type of a supporter of status quo. Consequently, in each state of the world 
the same qualified majority rule is optimal and therefore it is optimal ex ante.

PROPOSITION 1: Suppose there are two states of the world, ​​ω​1​​​ and ​​ω​2​​​ , each occur-
ring with strictly positive probability. Suppose that ​​E​​F​​ω​1​​​​​​ [​θ​i​​]  >  0  > ​ E​​F​​ω​2​​​​​​ [​θ​i​​]​ , and 
that the expected number of supporters of status quo is the same in both states. Then, 
for large enough populations, the pivot mechanism achieves a higher expected wel-
fare than any qualified majority voting rule.
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If the state of the world influences the type distributions but not the expected 
number of supporters of reform, the optimal majority requirement differs between 
the states of the world. Because the planner cannot choose the correct majority 
requirements, welfare under any voting procedure does not converge to first-best 
welfare. Because the welfare under the pivot mechanism converges to the first-best, 
it outperforms any voting rule for large populations.

PROOF: 
We show first that the aggregate expected payment ​​T​​ N​​ converges to zero in state ​​

ω​1​​​ (the arguments are analogous for state ​​ω ​2​​​): Let ​z​ be the sum of ​N − 1​ random 
variables that are independently distributed according to ​F​ , and let ​​F ̃ ​​ be the 
distribution function of ​z​. Then,

(2)	​ 0  ≥ ​ T​​ N​  =  N ​∫ 
0
​  ​
_
 θ​​​​∫ −​θ​i​​

​ 
0
  ​​ z d​F ̃ ​ (z)dF(​θ​i​​) − N​∫ ​θ _​​ 

0
​​​∫ 

0
​ 
−​θ​i​​​​ z d​F ̃ ​ (z)dF (​θ​i​​)

	 ≥ ​ ∫ 
0
​  ​
_
 θ​​​ −N ​θ​i​​ ​F ̃ ​ (0) dF(​θ​i​​) − ​∫ ​θ _​​ 

0
​​ −N ​θ​i​​ ​F ̃ ​ (​θ _​) dF (​θ​i​​), ​

where the first line uses the definition of payments in the pivotal mechanism. Since ​​
E​​F​​ω​1​​​​​​ [​θ​i​​]  >  0​ , we get ​N​F ̃ ​(0)  ≤  N Pr ​(​| z − (N − 1)​E​​F​​ω​1​​​​​​ [​θ​i​​]|​  > ​  1 _ 2 ​ (N − 1)​E​​F​​ω​1​​​​​​ [​θ​i​​])​​.  
Since ​​E​​F​​ω​1​​​​​​ ​[ | ​θ​i​​ ​|​​ 

3​]​  <  ∞​ , theorem 1 in Katz (1963) implies that the right-hand side 
converges to zero as ​N  →  ∞​  and, hence, that the first term in (2) converges to zero. 
An analogous argument implies that the second term converges to zero. Therefore, 
welfare under the pivotal mechanism converges to the first-best welfare as the 
population grows.

For a voting procedure to approach the first-best, it must implement reform with 
probability approaching one in state ​​ω​1​​​ and with probability approaching zero in 
state ​​ω ​2​​​. However, for an arbitrary voting rule the probability of implementing 
the reform is the same in both states of the world because the expected number of 
supporters of status quo is the same in both states. Consequently, no voting rule 
approximates the first-best in this environment and if the population is large enough, 
the pivotal mechanism outperforms any voting mechanism. ∎

Green and Laffont (1977) showed that the aggregate payments in the pivotal 
mechanism converge to zero if the expected value of the types is different from zero 
and if the density of ​​F ̃ ​​ converges uniformly to zero sufficiently fast. More recently, 
Ledyard (2006) also showed that aggregate payments converge to zero in a model 
where the distribution of types depends on the population size and in the limit is 
supported on (a subset of) the positive real numbers.

III.  Discussion

The fact that the efficient decision rule cannot be implemented with a balanced 
budget introduces a trade-off for a utilitarian planner. Should she choose a more 
efficient decision rule or one that requires smaller payments by the agents? We 
model this trade-off explicitly and solve for the welfare maximizing mechanism. 
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For regular type distributions, it is optimal not to waste any monetary resources and 
to decide by majority voting.

The characterization of majority voting as the optimal mechanism relies on 
the specifics of our environment. In particular, the result that no money can be 
redistributed hinges on the anonymity requirement. If we relax this requirement (or 
allow for stochastic decision rules), majority voting is no longer optimal in general. 
The best budget-balanced mechanism for distributions that are symmetric around 
zero is a “sampling Groves approach:” pick a default agent, implement the efficient 
decision for the remaining agents, and award all incentive payments to the default 
agent (Laffont and Maskin 1982).

Example 2: Let ​n  =  4​ and ​​θ​i​​​ be independently and uniformly distributed on ​
[−3, 3]​.

By Theorem 1, the optimal deterministic and anonymous mechanism is given by 
an optimal voting rule (which accepts the proposal if either at least two or at least 
three agents are in favor). This yields a welfare of ​​U​MV​​  =  36/32​ .

A sampling Groves scheme would, for example, implement the decision that is 
jointly optimal for agents 1, 2, and 3. All incentive payments that are collected from 
these agents would then be awarded to agent 4. This yields welfare ​​U​sGroves​​  =  39/32​ .  
If stochastic mechanisms are allowed, the same welfare can be achieved via an 
anonymous mechanism, that permutes the names of the agents at random and then 
applies the mechanism described above.

In contrast to the anonymity (respectively, nonrandomness) requirement, the 
participation constraint seems not to be a driving force of our results. Imposing 
universal participation simplifies the analysis and allows for the clear-cut result that no 
redistribution is possible for anonymous decision rules. Without it, a characterization 
of the optimal redistribution payments is hard; our numerical results suggest nonethe-
less that voting is often optimal even if one does not impose participation constraints.

Considering a richer set of possible alternatives, the results would depend on the 
specification of agents’ preferences. While in many cases trade-offs similar to those 
in our model are present, our results do not extend in general. For example, in an 
environment with quadratic utilities and a continuum of alternatives, the efficient 
decision rule can be implemented with a balanced budget (Groves and Loeb 1975).

In an early contribution, Tideman and Tullock (1976) argued informally that 
implementing the pivotal mechanism might be a welfare-superior way to decide on 
public projects, even if the payments that accrue in the decision process are wasted. 
They suggest that aggregate payments vanish as the number of agents gets large and 
therefore the pivotal mechanism approximates the first-best in large populations.9 
Our main result contrasts with this suggestion. We show that the optimal qualified 
majority voting rule is often welfare-superior to the pivot mechanism. An explanation 
for our result is that the optimal voting rule also approximates the first-best in large 
populations, and therefore the pivotal mechanism does not necessarily provide 
higher welfare. Indeed, for any finite population, it often achieves a higher welfare. 

9 More recently, Ledyard (2006) concluded, in a related setting, that the pivotal mechanism produces higher 
welfare than simple majority voting for large populations, if the distribution is sufficiently asymmetric. 



VOL. 10 NO. 3� 267DREXL AND KLEINER: WHY VOTING?

Our results thereby shed a new light on the widespread criticism that voting is 
inefficient. Despite sometimes imposing the “wrong” decision, it can be optimal to 
ban monetary transfers and decide by majority voting.

Appendix

VERIFICATION OF EXAMPLE 1: 
Welfare of the pivot mechanism can be expressed as the difference between the 

welfare of the first-best and the transfers needed to implement the efficient decision:

	​ ​U​VCG​​  = ​ U​FB​​ − ​ 4 ___ 
36

 ​ ​∫ 
−3

​ 
0
 ​​​∫ 

0
​ 
−​θ​1​​​​(−​θ​2​​) d ​θ​2​​ d ​θ​1​​  = ​  1 __ 

2
 ​​ .

Here, we used the fact that transfers are symmetric in the four regions ​{θ | ​θ​i​​  ≥  0, ​
θ​j​​  ≤  0, ​θ​i​​ + ​θ​j​​  ⋚  0}​ and zero everywhere else.

The following lemma shows how utilitarian welfare of a mechanism can be 
expressed as the sum of two terms. The first only depends on the decision rule, and 
the second consists of the redistribution payments.

LEMMA 3: Let ​(x, t)​ be an incentive compatible mechanism and define

(A.1)	​ ψ(​θ​i​​)  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​
​ − F (​θ​i​​) _____ 

f (​θ​i​​)
 ​
​ 

if ​θ​i​​  ≤  0
​  

​ 1 − F (​θ​i​​) ______ 
f (​θ​i​​)

 ​
​ 

otherwise
​​​.

Then we have

	​ U (x, t)  = ​ ∫ 
​Θ​​ n​

​ 
 
 ​​ ​ [​ ∑ 

i∈N
​​​ ψ (​θ​i​​)]​x (θ) d​F​​ n​ (θ) + ​ ∑ 

i∈N
​​​ ​∫ 

​Θ​​ n−1​
​ 

 
 ​​ ​ h​i​​ (​θ​−i​​) d​F​​ n−1​ (​θ​−i​​).​

PROOF: 
Note that for all ​​θ​−i​​​ ,

(A.2) ​​ ∫ ​θ _​​ 
 ​
_
 θ​​​ ​[​∫ 

0
​ 
​θ​i​​​​ x (β, ​θ​−i​​) dβ]​ f (​θ​i​​) d​θ​i​​

	     = ​
[
​∫ 

0
​  ​
_
 θ​​​ x (β, ​θ​−i​​) dβ ​​F(​

_
 θ​)   ⏟
​​ 

=1

​ 
 
 ​  − ​∫ 

0
​ 
 ​θ _​​​ x (β, ​θ​−i​​) dβ ​​F(​θ _​)   ⏟

​​ 
=0

​ 
 
 ​

]
​ − ​∫ ​θ _​​ 

  ​
_
 θ​​​ x (​θ​i​​ , ​θ​−i​​)F (​θ​i​​) d​θ​i​​

	     = ​ ∫ 
0
​  ​
_
 θ​​​ ​ 1 − F (​θ​i​​) _______ 

f (​θ​i​​)
 ​  x (​θ​i​​ , ​θ​−i​​) dF (​θ​i​​) + ​∫ ​θ _​​ 

0
​​ ​ − F (​θ​i​​) ______ 

f (​θ​i​​)
 ​  x (​θ​i​​ , ​θ​−i​​) dF (​θ​i​​)

	     = ​ ∫ ​θ _​​ 
 ​
_
 θ​​​ ψ (​θ​i​​)x (​θ​i​​ , ​θ​−i​​) dF (​θ​i​​),​

where the first equality follows from integrating by parts, the second from rearrang-
ing terms, and the third from the definition of ​Ψ​.
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Now rewrite

	​ U(x, t)  = ​ ∫ 
​Θ​​ n​

​ 
 
 ​​ ​  ∑ 

i∈N
​​​ [​θ​i​​ x (θ) + ​t​i​​ (θ)] d​F​​ n​(θ)

	 = ​  ∑ 
i∈N

​​​ ​∫ 
​Θ​​ n−1​

​ 
 
 ​​​ ∫ ​θ _​​ 

 ​
_
 θ​​​ ​[​∫ 

0
​ 
​θ​i​​​​ x (β, ​θ​−i​​) dβ + ​h​i​​ (​θ​−i​​)]​ dF(​θ​i​​) d​F​​ n−1​(​θ​−i​​)

	 = ​ ∫ 
​Θ​​ n​

​ 
 
 ​​ ​ [​ ∑ 

i∈N
​​​ ψ (​θ​i​​)]​x (θ) d​F​​ n​(θ) + ​ ∑ 

i∈N
​​​ ​∫ 

​Θ​​ n−1​
​ 

 
 ​​ ​ h​i​​ (​θ​−i​​) d​F​​ n−1​(​θ​−i​​),​

where the first equality follows by definition, the second from Lemma 1, and the 
third by plugging in equation (A.2). ∎

For any subset ​S  ⊆  N​ of the agents, define the corresponding orthant as ​​
​S​​  =  {θ  ∈ ​ Θ​​ n​ | ​θ​i​​  ≥  0 if i  ∈  S, ​θ​i​​  ≤  0 if i  ∉  S}​. 

LEMMA 4: Suppose that ​ψ(θ)​ is nonincreasing in ​θ​ and ​​∫ ​​ ​​​ ψ (θ) d​F​​ n​ (θ)  <  ∞​. Let ​​
​S​​​ be the orthant corresponding to some subset of agents ​S​. Then the problem

	​​ max​ 
x
​ 
 
 ​​ ​​ ∫ ​​S​​

​ 
 

 ​​​  ψ (θ) · x (θ) d​​F​​ n​​ (θ)

subject to

	 x is nondecreasing in θ,

	 0  ≤  x (θ)  ≤  1,

is solved optimally either by setting ​​x​​ ∗​ (θ)  =  1​ or ​​x​​ ∗​ (θ)  =  0​.

The objective is to find a nondecreasing function that maximizes the integral over 
the product of this function with a non-increasing function. Extending Chebyshev’s 
inequality to multiple dimensions yields that the objective function is maximized by 
choosing the nondecreasing function to be constant. Note that Chebyshev’s inequal-
ity was introduced in a related setting by Shao and Zhou (2016a).

PROOF: 
Suppose to the contrary that there exists a function ​​x ̂ ​(θ)​ that achieves a strictly 

higher value. Let ​​a​i​​  ≔  inf { ​θ​i​​ | (​θ​i​​ , ​0​−i​​)  ∈ ​ ​S​​}​ , ​​b​i​​  ≔  sup {​θ​i​​ | (​θ​i​​ , ​0​−i​​)  ∈ ​ ​S​​}​, and 
define ​​x​​ (1)​ (​θ​1​​ , ​θ​−1​​)  ≔ ​   1 ________ 

F(​b​1​​) − F(​a​1​​)
 ​ ​∫ ​a​1​​​ ​b​1​​​​ ​x ̂ ​(β, ​θ​−1​​) dF(β)​. This function is constant 

in ​​θ​1​​​ , feasible for the above problem given that ​​x ̂ ​​ is feasible and, by Chebyshev’s 
inequality, for all ​​θ​−1​​​ ,

   ​​   ∫ ​a​1​​
​ 

​b​1​​​​ ψ (​θ​1​​ , ​θ​−1​​)​x ̂ ​ (​θ​1​​ , ​θ​−1​​) dF (​θ​1​​)

          ≤ ​ ∫ ​a​1​​
​ 

​b​1​​​​ ψ (​θ​1​​ , ​θ​−1​​) dF (​θ​1​​) ​  1 __________  
F (​b​1​​) − F (​a​1​​)

 ​ ​∫ ​a​1​​
​ 

​b​1​​​​ ​x ̂ ​ (​θ​1​​ , ​θ​−1​​) dF (​θ​1​​)

          = ​ ∫ ​a​1​​
​ 

​b​1​​​​ ψ (​θ​1​​ , ​θ​−1​​)​x​​ (1)​ (​θ​1​​ , ​θ​−1​​) dF (​θ​1​​)​.



VOL. 10 NO. 3� 269DREXL AND KLEINER: WHY VOTING?

Since this inequality holds point-wise, we also have

	​​ ∫ ​​S​​
​ 

 
 ​​ ψ (θ)​x ̂ ​ (θ) d​F​​ n​(θ)  ≤ ​ ∫ ​​S​​

​ 
 
 ​​ ψ (θ)​x​​ (1)​ (θ) d​F​​ n​(θ)​.

Iteratively defining ​​x​​ ( j)​ (​θ​j​​ , ​θ​−j​​)  = ​   1 ________ 
F(​b​j​​) − F(​a​j​​)

 ​ ​∫ ​a​j​​
​ ​b​j​​​​ ​x​​ ( j−1)​ (β, ​θ​−j​​) dF( β )​ for ​

j  =  2, … , n​​,​ we get a function ​​x​​ (n)​ (θ)​ that is constant in ​θ​. Repeatedly applying 
Chebyshev’s inequality along every dimension, we get

	​​ ∫ ​​S​​
​ 

 
 ​​ ψ (θ)​x ̂ ​ (θ) d​F​​ n​(θ)  ≤ ​ ∫ ​​S​​

​ 
 
 ​​ ψ (θ)​x​​ (n)​(θ) d​F​​ n​(θ)​.

Since the objective function is linear in ​x​ , the constant function ​​x​​ (n)​​ is weakly 
dominated by either ​​x​​ ∗​  ≡  1​ or ​​x​​ ∗​  ≡  0​ , contradicting the initial claim. ∎

PROOF OF THEOREM 1: 
Lemma 2 and Lemma 3 together imply that for any anonymous mechanism ​(x, t)​ 

it holds that

	​ U (x, t)  = ​ ∫ 
​Θ​​ n​

​ 
 
 ​​ ​ [​ ∑ 

i∈N
​​​ ψ (​θ​i​​)]​x(θ) d​F​​ n​(θ)​,

where ​ψ​ is defined in (A.1). The summation ​​∑ i∈N​   ​​  ψ(​θ​i​​)​ is nonincreasing by the 
assumption of increasing hazard rates, and Lemma 4 therefore implies that the 
optimal decision rule is constant and equal to zero or one within each orthant. 
This implies that the optimal rule depends only on the sign of the reports.

Ex ante symmetry of the agents implies that the solution to this problem is 
anonymous. Monotonicity of incentive compatible rules then implies that the 
optimal rule accepts the proposal if and only if the number of agents with positive 
types is above some threshold. The fact that the decision rule depends only on the 
signs of the reports implies moreover by Lemma 1 that ​​t​i​​ (θ)  =  0​ for all ​i, θ​.

Hence, it remains to determine the optimal cutoff for qualified majority voting. 
Let ​k​ solve

	​ kE [​θ​i​​ | ​θ​i​​  ≥  0] + (n − k)E [​θ​i​​ | ​θ​i​​  ≤  0]  =  0.​

Then the expected aggregate valuation, given that ​k′  <  k​ agents are in favor of the 
proposal, is negative. Therefore, it is optimal to accept the proposal if and only if at 
least ​​⌈k⌉​​ agents have a positive valuation. ∎
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