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the assumption of an increasing hazard rate of type distributions, an optimal deterministic 
mechanism never extracts any net payments from the agents, that is, it will be budget-
balanced. Specifically, optimal mechanisms have a simple “posted price” or “option” form. 
In the bilateral trade environment, we obtain optimality of posted price mechanisms 
without any assumption on type distributions.
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1. Introduction

Most parts of the mechanism design literature studying welfare maximization problems focus on mechanisms imple-
menting the efficient allocation. However, in general it is not possible to implement the efficient allocation in dominant 
strategies using budget-balanced mechanisms (Green and Laffont, 1979). Given this result, we study how to choose among 
different mechanisms that cannot attain both, allocative efficiency and budget-balancedness. Since we are concerned with 
welfare maximization, the social planner’s objective function should consist of the agents’ aggregate utility and therefore 
include aggregate transfers. In other words, one seeks to find mechanisms that maximize what we call residual surplus. This 
is the surplus, or utility, the agents derive from the chosen physical allocation, reduced by the amount of transfers that are 
lost to an external agency (this is often called “money burning”).

A common approach is to implement the efficient allocation via Groves mechanisms and to redistribute as much money 
to the agents as possible without distorting incentives (Cavallo, 2006; Guo and Conitzer, 2009, 2010; Moulin, 2009). This 
approach aims at characterizing the optimal mechanism for allocating private goods that implements the efficient allocation
in dominant strategies, is individually rational and never creates a budget deficit (ex-post).1 However, if mechanisms that allocate 
inefficiently yield higher residual surplus (Guo and Conitzer, 2014) it is not clear why one should use a mechanism that 
allocates efficiently.

Consequently, we drop the requirement that mechanisms allocate efficiently. Instead, we take an optimal mechanism 
design approach and consider mechanisms that are comparable to the ones considered before in that they are strategy-proof, 
deterministic, never run a deficit and satisfy ex-post participation constraints. We analyze which mechanism maximizes residual 
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surplus when an indivisible good is auctioned among two agents with independent private values that are distributed 
according to prior type distributions. We show that under an increasing hazard rate assumption on type distributions, the 
optimal mechanism will never waste any payments, thereby deviating distinctly from the efficient allocation (Theorem 1). In 
fact, our proof method reveals that all mechanisms that allocate efficiently are worse than the simple mechanism where the 
object is always given to the same agent (the one with the higher expected valuation; Corollary 1), showing that our general 
mechanism design approach has clear advantages over the previous approach to search for the optimal Groves mechanism. 
We show that the optimal mechanism is either a “posted price” or an “option” mechanism: The object is assigned to one 
of the agents unless both agents agree to trade at a prespecified price (posted price mechanism) or unless the second 
agent uses his option to buy the object at a fixed price from the first agent (option mechanism). Therefore, the optimal 
mechanisms do not invoke money burning and are of a particularly simple form. Moreover, numerical simulations indicate 
that these simple mechanisms obtain a large share of first-best welfare (92 per cent on average in our simulations). In the 
bilateral trade setting, we establish optimality of posted price mechanisms without any restrictions on type distributions 
(Theorem 2). This provides an argument for the focus on budget-balanced mechanisms (see Myerson and Satterthwaite, 
1983; Hagerty and Rogerson, 1987).

The requirement that a mechanism does not produce a budget deficit ex-post is considerably stronger than the require-
ment that this holds in expectation. However, in many situations it is reasonable that a budget breaker is infeasible and 
therefore ex-post constraints need to be obeyed. This includes situations where there is no insurance or where agents have 
restricted access to capital markets. Also, hidden information issues towards a third party cannot always be resolved, and 
autarkic mechanisms that can be implemented without explicit intervention by a third party might be preferable (e.g., when 
mechanisms are used to model bargaining situations; Myerson and Satterthwaite, 1983; Hagerty and Rogerson, 1987). If all 
these considerations do not apply and mechanisms that create no deficit in expectation can be implemented (for example, 
because the designer has unlimited liability), then one can achieve the first-best solution (see Section 5). Similarly, we show 
that one can achieve the first-best if mechanisms are only required to be Bayesian incentive compatible (Proposition 1). 
In contrast to these two constraints, which are the main driving forces behind our results, we argue that the participation 
constraint and the restriction to deterministic mechanisms are not essential to the spirit of our results (Section 5).

Our work is part of a small literature that searches for mechanisms maximizing residual surplus when the first-best is 
not achievable. Miller (2012) studies a model of firms colluding in a Bertrand oligopoly. A mechanism used by a cartel to 
allocate market shares should maximize residual surplus. Miller shows that under general conditions it is never optimal 
to allocate market shares efficiently and gives numerical evidence that for some type distributions it is optimal to give up 
efficiency in order to obtain a balanced budget. However, other examples indicate that this observation does not hold for all 
distributions. Athey and Miller (2007) study residual surplus maximization in a repeated bilateral trade setting and obtain 
numerical results suggesting that for many type distributions the optimal mechanism is a posted price mechanism. Closely 
related to our paper is independent work by Shao and Zhou (2012), who obtain the characterization of our Theorem 1 when 
restricting to symmetric distributions of types and allowing mechanisms to violate individual rationality.

The result that the efficient allocation is never optimal contrasts with the literature cited above that restricts attention 
to efficient rules (Cavallo, 2006; Guo and Conitzer, 2009, 2010; Moulin, 2009). Recently, Athanasiou (2013) and Sprumont
(2013) relax this requirement. Similarly to our work, they focus on mechanisms that are deterministic, strategy-proof, ex-
post individually rational and create no deficit ex-post. However, they require mechanisms in addition to be anonymous, 
which immediately implies that whenever the object is allocated, it is allocated to the agent that values it the most (weak 
assignment efficiency). This restricts the set of mechanisms severely and excludes the mechanisms that turn out to be 
optimal in our analysis.

The restriction to efficient allocation rules has also been relaxed in a series of papers that study specific mechanisms 
in a multi-unit setting. Faltings (2005) and Moulin (2009) propose simple mechanisms where one agent is designated as 
a residual claimant and is allocated one unit (or no unit, respectively) independent of his type. The remaining units are 
auctioned among the other agents and the residual claimant receives all payments accruing in the auction. Faltings uses 
numerical examples to argue that his mechanism often outperforms the VCG mechanism. Moreover, Moulin shows that his 
mechanism provides a higher worst-case welfare guarantee than any VCG mechanism given that there are sufficiently many 
objects and agents. In our setting with two agents and one object, these mechanisms always allocate the object to a fixed 
agent and therefore correspond to a degenerate option mechanism. Our Corollary 1 supports Faltings’ numerical results 
in the two agent setting by showing that under regular prior distributions his mechanism indeed outperforms the VCG 
mechanism. Building on the ideas of Faltings and Moulin, Guo and Conitzer (2014) provide worst-case welfare guarantees 
for two specific classes of mechanisms that allocate inefficiently: Burning allocation mechanisms burn a (random) number 
of units and assign the remaining units efficiently. Partitioning mechanisms partition units and agents randomly into two 
groups, allocate the objects in each partition efficiently to the agents in the corresponding partition and distribute the 
payments to agents in the other partition. Similarly, de Clippel et al. (2014) propose a deterministic mechanism where the 
burning of items is contingent on the reports of the agents; they provide worst-case welfare guarantees that converge to 
0.88 asymptotically as the number of agents grows. Our work differs from these papers by evaluating mechanisms according 
to a Bayesian prior, restricting ourselves to the two agent setting and using a general optimal mechanism design perspective.

Another related strand of the literature studies the expected residual surplus of Bayesian incentive compatible mecha-
nisms when it is not possible to redistribute any payments among the agents (Hartline and Roughgarden, 2008; Chakravarty 
and Kaplan, 2013; Condorelli, 2012). This implies that methods similar to those in Myerson (1981) can be applied. It is 
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shown that for a large class of type distributions (those which exhibit an increasing hazard rate) it is optimal to always 
assign the object to the same agent. Maximization of residual surplus also plays a role in the analysis of optimal mecha-
nisms used by bidding rings (McAfee and McMillan, 1992). It is worth noting that the equivalence between Bayes–Nash and 
dominant strategy implementation (Gershkov et al., 2013; Manelli and Vincent, 2010) does not apply to our model.2

We present the basic model for the auction environment in Section 2 and characterize incentive compatible mechanisms 
in Section 3. The optimization problem is solved in Section 4, the role of the assumptions is discussed in Section 5. We 
study this mechanism design problem in the bilateral trade context in Section 6, and conclude in Section 7.

2. Model

An indivisible object is auctioned among two agents. Each agent i = 1, 2 has a valuation xi for the object, which is 
his private information. Valuations are drawn independently from Xi = [0, ̄xi] according to distribution functions Fi with 
corresponding densities f i , which we assume to be bounded.3 We denote by X = X1 × X2 the product type space and 
by F the joint distribution on X . For notational convenience, when concentrating on agent i, we will write (xi, x−i) for 
x = (x1, x2) ∈ X .

If agent i is given a payment of pi (usually negative), his utility is xi + pi for winning the object, and pi if the other 
agent gets the object.

Mechanisms Due to the Revelation Principle we focus on truthfully implementable direct revelation mechanisms for selling 
the object.

Definition 1. A mechanism M is a tuple (d, p), where d : X → {0, 1}2 and p : X → R
2 are measurable functions, such that 

d1(x) + d2(x) = 1.4

The interpretation is that di(x) = 1 if and only if agent i gets the object. If the agents report x, then agent i receives as 
payment the component pi(x) of p(x).

Equilibrium concept We consider strategy-proof mechanisms where truthful reporting is a dominant strategy for both 
agents. Thereby, we ensure that the mechanisms can robustly be implemented without specific assumptions on the be-
liefs of the agents. Hence, we define the following notion of incentive compatibility:

Definition 2. A mechanism M is incentive compatible (IC) if for every agent i and for each xi ∈ Xi , ri ∈ Xi ,

di(xi, r−i) · xi + pi(xi, r−i) ≥ di(ri, r−i) · xi + pi(ri, r−i)

holds for each r−i ∈ X−i .

This definition is independent of the distribution of valuations, which reflects the robustness of strategy-proof mecha-
nisms as compared to mechanisms that are Bayes–Nash incentive compatible. Although the set of mechanisms we consider 
does therefore not depend on F , the next section shows that the distributions determine which mechanism is optimal.

Objective and further constraints We aim at finding the mechanism that maximizes the sum of agents’ ex-ante (expected) 
residual surplus, that is, utility derived from the physical allocation minus aggregate payments. We impose the constraint 
that the mechanism has to be ex-post no-deficit (ND), that is, for every type profile x, we require p1(x) + p2(x) ≤ 0.5 Also, the 
mechanism has to be ex-post individually rational (IR), that is, for all type profiles x, we require di(x)xi + pi(x) ≥ 0, i = 1, 2. 
Summarizing, we want to solve the following optimization problem:

max
M=(d,p)

∫
X

[
d1(x)x1 + d2(x)x2 + p1(x) + p2(x)

]
dF (x)

s. t. M satisfies IC, ND and IR. (1)

We say that a mechanism is optimal if it solves problem (1).

2 See Section 5 for more details.
3 Assuming that the lower bound of the type space is 0 simplifies the analysis. The details are explained in footnote 7.
4 For a discussion of stochastic mechanisms, see Section 5. We follow Athey and Miller (2007) and Miller (2012) and assume that the good is always 

allocated. This is reasonable, for example, when considering how a cartel allocates market shares, or how the government sells licenses to firms. While 
there can be welfare gains from not allocating the good when one focuses on anonymous mechanisms (de Clippel et al., 2014), these gains seem to be 
minor in our model. Moreover, the assumption that the good is always allocated is without loss of generality in the trade setting (Section 6).

5 Ex-post budget constraints are commonly imposed on mechanism design problems: see, for example, the literature on optimal redistribution (Guo and 
Conitzer, 2010, 2009; Moulin, 2009) and bilateral trade (Hagerty and Rogerson, 1987; Myerson and Satterthwaite, 1983), or Chawla et al. (2006). The role 
of this assumption is discussed in Section 5.
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3. Characterization of incentive compatibility

The aim of this section is to give a characterization of incentive compatibility in order to simplify problem (1). The 
conditions characterizing incentive compatible mechanisms involve a monotonicity and an integrability condition. We first 
define monotonicity.

Definition 3. The allocation function d is monotone if di is non-decreasing in xi for i = 1, 2.

Now given a monotone allocation function d, define the following functions for i = 1, 2:

gi(x−i) := inf{xi : di(xi, x−i) = 1}.
If there is no xi such that d(xi, x−i) = 1, then we set gi(x−i) = x̄i . Note that if d is monotone, these functions define d almost 
everywhere. The following lemma, which is a corollary of Myerson (1981), gives a characterization of incentive compatibility.

Lemma 1. A deterministic mechanism M = (d, p) is incentive compatible if and only if the following two conditions are satisfied:

1. The allocation rule d is a monotone step function.
2. For all xi ∈ Xi and x−i ∈ X−i ,

pi(xi, x−i) = qi(x−i) − gi(x−i)di(xi, x−i) (2)

for some function qi : X−i →R.

The interpretation of condition (2) is that an agent who receives the object is punished by receiving a lower payment: 
she receives qi(x−i) if she does not receive the object, and this payment is reduced in case she gets the object to make the 
agent’s marginal type gi(x−i) indifferent between receiving and not receiving the object.

This can be interpreted as a payoff-equivalence result: Payments are completely determined by the allocation as soon 
as one fixes the payment for some type xi . Hence, the only freedom that is left regarding the payment scheme, is to give 
the agent an additional payment that is independent of his type. These additional payments can serve as a possibility to 
redistribute certain amounts of payments to another agent. Given an allocation rule d and a payment rule p, we say that 
the redistribution payment q implicitly defined by the above equality is associated with p.

The simplified formulation of problem (1) is the following:

max
M=(d,p)

∫
X

[
d1(x)[x1 − g1(x2)] + d2(x)[x2 − g2(x1)] + q1(x2) + q2(x1)

]
dF (x)

s. t. M satisfies IR and ND, q is associated with p and d is monotone.

We will write U (M) for the above integral and from now on only consider mechanisms that are IC, IR and ND.

4. The optimal auction

In this section, we present the first main result of this paper: if we impose an increasing hazard rate condition on 
the type distributions, then the optimal mechanism is always budget-balanced. Specifically, it turns out that the optimal 
mechanism takes one of two simple forms:

Either it is a posted price mechanism which by default allocates the object to one of the agents (agent 1, say) and 
changes the allocation if and only if both agents agree to trade at a prespecified price a, i.e., agent 1 reports a valuation 
below a fixed price a and agent 2 reports a valuation above a. If agent 2 is allocated the object, he makes a payment a to 
agent 1, otherwise no transfers accrue.

Or it is an option mechanism where the good is allocated by default to agent 1, but agent 2 has the option to buy the 
object at price a. Hence, if agent 2’s valuation is above the strike price a, he buys the object and pays a to agent 1 (see also 
Shao and Zhou, 2012).

Formally, these two mechanisms are defined as follows:

Definition 4. A mechanism M = (d, p) is a posted price mechanism with default agent 1 and price a, if

d2(x) = 1, p(x) = (a,−a) if x1 ≤ a and x2 ≥ a,

d2(x) = 0, p(x) = (0, 0) otherwise.

M is an option mechanism with default agent 1 and price a, if

d2(x) = 1, p(x) = (a,−a) if x2 ≥ a,

d (x) = 0, p(x) = (0, 0) otherwise.
2
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Similarly, one can define posted price and option mechanisms with default agent 2. If we do not specify the agent or 
price we just say that M is option or posted price.

Both classes of mechanisms are parameterized by the price a and it is easy to check that all these mechanisms are 
budget-balanced as well as incentive compatible and individually rational.

Our assumption on type distributions is the following:

Condition (HR). The hazard rates of the type distributions are monotone. That is, the functions hi(xi) = f i(xi)
1−Fi(xi)

are non-decreasing 
in xi ∈ [0, ̄xi) for i = 1, 2.

Theorem 1. Suppose that the hazard rates of the type distributions are monotone. Then the optimal mechanism is either a posted price 
or an option mechanism.

It is known that if payments are wasteful by assumption, then for regular distributions it is optimal to make the al-
location independent of reports (Hartline and Roughgarden, 2008): a more efficient allocation is more than offset by the 
waste of payments that are required for incentive-compatibility. Given that money can be redistributed in our model, there 
are better budget-balanced mechanisms (essentially posted price and option mechanisms). One might argue naively that, if 
wasting money is suboptimal in the setting of (Hartline and Roughgarden, 2008), it must also be suboptimal in this setting, 
and hence a budget-balanced mechanism must be optimal. However, redistribution payments allow for additional flexibility, 
which makes the argument more subtle and requires that we optimize jointly allocations and redistribution payments.6

The proof can be sketched as follows: We first show the important auxiliary result that either an option mechanism or 
a posted price mechanism is optimal in M0, the class of mechanisms such that gi is monotone and piecewise constant 
for each agent (Lemma 2). We then argue that the residual surplus U (M) of a given mechanism M can be approximated 
arbitrarily well by a mechanism in M0 (Lemma 3). The Theorem then follows by the following observation: Suppose there is 
a mechanism M̄ being strictly better than the best option or posted price mechanism, and denote the difference in residual 
surplus by ε. It follows from Lemma 3 that there is a mechanism in the class M0 whose residual surplus is within ε

2 of 
U (M̄), thus being better than the best option or posted price mechanism. But this contradicts Lemma 2, hence there cannot 
be a mechanism being better than the best option or posted price mechanism.

While the approximation part of the proof can be found in the Appendix, we state and prove Lemma 2, which contains 
the essence of why Theorem 1 holds.

Lemma 2. Suppose that the hazard rates of the type distributions are monotone and let M = (d, p) be any mechanism in M0 . Then 
there exists a mechanism M ′ that is posted price or option such that U (M ′) ≥ U (M).

Proof. The proof consists of three steps: Step 1 determines for an arbitrary allocation rule the maximal possible redistribu-
tion payments qi . Hence, the allocation rule from this point on completely determines the optimal payments and we can 
constructively manipulate the allocation rule in Steps 2 and 3 until we end up with an option or posted price mechanism.

Step 1: We denote the jump points of g2(x1) and g1(x2) by α j and β j , respectively (see Fig. 1). Note that, without loss 
of generality, we can assume that for the first segment of g1 we have g1(x2) = 0 since otherwise we could switch the roles 
of the agents.

We now claim that q2(x1) = 0, ∀x1 ∈ X1; that is, no money is redistributed to agent 2. To see this, pick arbitrary x1
and observe that g1(0) = 07 and d2(x1, 0) = 0; therefore g1(0)d1(x1, 0) = g2(x1)d2(x1, 0) = 0. From (ND) it follows that 
q1(0) + q2(x1) = p1(x1, 0) + p2(x1, 0) ≤ 0. Also, (IR) for agent 2 at (x1, 0) implies q2(x1) ≥ 0, and (IR) for agent 1 at (0, 0)

implies q1(0) ≥ 0, and therefore q2(x1) = 0.
Next, we can assume that

q1(x2) = min
x1

{
g1(x2)d1(x1, x2) + g2(x1)d2(x1, x2)

}
(3)

always holds, since by (ND) this relation always holds with ≤ and changing it to equality does not reduce U (M). In this 
way, the complete payment-scheme is determined through the allocation rule d. Note that setting the function q this way 
implies that (ND) and (IR) are always satisfied.

Step 2: In this step we argue that changing the allocation to the one shown in Fig. 1b does not increase money burning, 
but increases allocative efficiency and hence aggregate welfare.

6 Indeed, if the arguments from a model without redistribution could simply be extended, our conclusion would also hold for stochastic mechanisms. 
However, numerical results in Section 5 show that this is not the case.

7 At this step we use that 0 is the lower bound of the type space. This assumption implies that participation constraints pin down the maximal redistri-
bution payments. Without this assumption, one would have to optimize over redistribution payments. If, for example, f1 = f2 and f i is log-concave then 
exactly the same results can be obtained.



174 M. Drexl, A. Kleiner / Games and Economic Behavior 94 (2015) 169–181
Fig. 1. Illustration of the proof of Lemma 2.

Define the set B = {x | x1 ≤ β1 ≤ x2, d2(x) = 0} and consider the sets B1, B2 and C as shown in Fig. 1a. We change 
the allocation rule and allocate the object to agent 2 for types in B . Since x2 ≥ x1 for x ∈ B , this improves the physical 
allocation and we can concentrate on payments. Note that q1, as defined in (3), increases to the same extent as g1, hence 
any additional payments in the set B2 can be redistributed. Also, transfers are weakly increased for types in B1 and C . As 
the change in allocation has no effect outside these sets, the claim follows.

Step 3: This step studies the effects of shifting steps in the set R , shown as the shaded area in Fig. 1b, while fixing 
redistribution payments. Our condition on the hazard rate ensures that each step should optimally be moved to either the 
lowest or the highest possible position. Hence, proceeding iteratively, we obtain either an option mechanism or a posted 
price mechanism. This will complete the proof.

Changing the allocation in R does not change q1 as defined in (3) and we ignore the functions qi from now on.
The following is a procedure to remove one step contained in R without decreasing U (M). We do this exemplarily with 

the jump point at β3 (see Fig. 1b). We vary β3 on the interval [β2, β4] and show that welfare is quasi-convex in β3. This 
implies that setting β∗

3 = β2 or β4 increases U (M). The part of U (M) that depends on β3 is the following:

α3∫
α2

⎡
⎢⎣

β3∫
β2

(x1 − α2)dF2(x2) +
x̄2∫

β3

(x2 − β3)dF2(x2)

⎤
⎥⎦dF1(x1) −

x̄1∫
α3

⎡
⎢⎣

β3∫
β2

α2dF1(x1) +
β4∫

β3

α3dF2(x2)

⎤
⎥⎦dF1(x1)

Differentiating with respect to β3 using Leibniz’ rule yields

α3∫
α2

[
f2(β3)(x1 − α2) − [

1 − F2(β3)
]]

dF1(x1) +
x̄1∫

α3

f2(β3)[α3 − α2]dF1(x1).

Writing constants C1, C2 and C3 for the terms that do not depend on β3, we get

C1 f2(β3) − C2
[
1 − F2(β3)

] + C3 f2(β3).
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Table 1
Simulation results showing the share of first-best welfare that is obtained by the 
optimal posted price or option mechanism. We solved a discretized model and 
ran 500 trials for each distribution using randomly drawn parameters.

Distribution Average share Minimum share

Weibull (IHR) 0.930% 0.788%
Weibull (DHR) 0.916% 0.753%
Exponential 0.905% 0.752%

Assuming C2[1 − F2(β3)] > 0 (if either C2 = 0 or 1 − F2(β3) = 0, we set β∗
3 = β4 without reducing U ), we can divide by 

C2[1 − F2(β3)] and get that the derivative is non-negative if and only if

C · h2(β3) − 1 ≥ 0,

where C = (C1 + C3)/C2 > 0. Because h2(β3) is non-decreasing by condition (HR), quasi-convexity follows and U (M) is 
increased by either setting β∗

3 = β2 or β∗
3 = β4. In either case, we have decreased the number of steps by one and the 

procedure ends.
Iteratively applying this procedure establishes the lemma. �
A consequence of the theorem is that, given the increasing hazard rates of the agents’ type distributions, finding the best 

mechanism reduces to finding the best posted price and option mechanisms and comparing these two. For example, if the 
agents have the same distribution function, all option and posted price mechanisms with the same strike price yield the 
same welfare and therefore the best mechanism is characterized by the strike price a∗ satisfying

a∗ = E[x1] = E[x2].
Our intermediate results (see the proof of Lemma 2) also allow for a refined judgment of the welfare implied by the 

efficient allocation, which is employed by the literature on optimal redistribution (Cavallo, 2006; Guo and Conitzer, 2009,
2010; Moulin, 2009). We provide a mechanism that improves upon all efficient mechanisms.8 Surprisingly, this improvement 
can be achieved using an extremely simple mechanism:

Corollary 1. If the hazard rates of the type distributions are monotone, then every mechanism that allocates efficiently is dominated 
by a mechanism that always allocates the good to the same agent.

More precisely, a mechanism that is better than every efficiently allocating mechanism can be found simply by comparing 
the agents’ type distributions, giving the good to the agent with the higher expected valuation and completely ignoring any 
reported types.

Despite their simplicity, the optimal mechanisms obtain a surprisingly large share of first-best welfare, as the following 
example suggests (see Table 1 for further numerical estimates of the share of first-best welfare that the optimal mechanism 
obtains). Note that randomly allocating the object to one of the agents provides a worst-case welfare guarantee of 1

2 ; in all 
our numerical examples the optimal posted price or option mechanism improves significantly over this lower bound.

Example 1. Suppose that θi ∼ U [0, 1] for i = 1, 2. First-best welfare is given by UFB = 2
3 , whereas the optimal mechanism 

M is an option mechanism with price 1
2 , yielding U (M) = 5

8 . Hence, the optimal mechanism yields a 93.8 per cent share of 
first-best welfare. In contrast, a random allocation yields only a 75 per cent share of first-best welfare.

The following example shows that if Condition (HR) is not satisfied the optimal mechanism need not be of the form 
stated in Theorem 1. The example also illustrates the role of (HR) in establishing the result.

Example 2. Let the distribution function of two symmetric agents be given as

f (xi) =
{

0.9 if xi ≤ 0.5
0.1 otherwise.

Due to the downwards jump at 0.5, f does not satisfy condition (HR). The optimal posted price mechanism (which is as 
good as the optimal option mechanism) has a strike price of a∗ = 0.275, attaining a social welfare of 0.0718. However, the 
following mechanism M attains a higher social welfare of 0.0741: Set

d2(x) = 1 ⇔ (x2 ≥ a∗ and x1 ≤ a∗) or (x2 ≥ 0.5 and x1 ≤ 0.5),

8 Indeed, this mechanism improves upon any mechanism that treats agents symmetrically in a neighborhood of 0. This observation extends to settings 
with more than two agents.
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Fig. 2. Mechanisms presented in Example 2.

and set q2(x1) ≡ 0, as well as

q1(x2) =
{

0 if x2 ≤ a∗
a∗ otherwise.

This mechanism and the best option mechanism are depicted in Fig. 2. One can see that the allocation of mechanism M
is more efficient. Because the induced higher payments cannot be redistributed, payments of (0.5 − 0.275) = 0.225 are lost 
for type profiles in the shaded area in Fig. 2b. But still, since type profiles x with x1, x2 ≥ 0.5 appear so rarely (with density 
0.01), this does not counter the positive effect due to the better allocation. In this sense, an increasing hazard rate ensures 
that lost payments can never be weighed out by an improved efficiency of the allocation.

5. Relaxing the constraints

In this section, we in turn relax the no-deficit, incentive compatibility and participation constraints as well as the re-
striction to deterministic mechanisms, and analyze how sensitive our characterization in Theorem 1 is to these relaxations.

Ex-ante budget constraints While ex-post budget constraints are imposed commonly in the literature and seem appropri-
ate for many settings, they would effectively be turned into ex-ante constraints if insurance against budget deficits was 
available.9 Relaxing the no-deficit constraint to an ex-ante constraint, thus requiring the mechanism to run at no deficit on 
average, simplifies the problem and allows the planner to implement the first-best (i.e., the efficient allocation and a bal-
anced budget). This can be achieved by running the VCG mechanism. This mechanism is ex-post individually rational and 
creates no deficit ex-post. By redistributing the expected surplus in an arbitrary fixed way to the agents, the mechanism 
becomes ex-ante budget-balanced and therefore achieves the first-best.

Bayesian incentive compatible mechanisms If stronger assumptions can be made on the information structure (namely, if the 
agents’ beliefs equal a common prior that is known to the designer), we can relax the constraints on the mechanisms 
to Bayesian incentive compatibility and interim individual rationality. This allows the implementation of mechanisms that 
achieve higher expected welfare. Notably, if the distribution of types is symmetric across agents, then the expected exter-
nality mechanism (d’Aspremont and Gerard-Varet, 1979; Arrow, 1979) achieves the first-best. To see this, observe that this 
mechanism allocates efficiently, has a balanced budget, and has payments given by

tEEM
i (x) =

x−i∫
xi

x−idF−i(x−i) −
xi∫

x−i

xidFi(xi). (4)

Therefore, an agent reporting a type of 0 receives a weakly positive transfer and hence a weakly positive utility. The follow-
ing Proposition shows that with ex-ante symmetric agents, the expected externality mechanism is even ex-post individually 
rational. More generally, it shows that the first-best can be achieved whenever virtual values are increasing (in particular, 
under condition (HR)).

Proposition 1. Consider the problem of finding the optimal mechanism that is Bayesian incentive compatible, interim individually 
rational and satisfies ex-post no-deficit.

9 Note also, that the exact form of the budget constraints can be irrelevant when considering Bayesian incentive compatible mechanisms (Esö and Futo, 
1999).
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Table 2
Simulation results comparing the welfare loss due to the restriction to deterministic mechanisms.

Distribution Average loss Maximum loss Instances without loss

Random 0.018% 0.874% 92.500%
IHR 0.003% 0.420% 97.850%
Weibull 0.000% 0.000% 100.000%

All 0.007% 0.874% 96.785%

1. If virtual valuations are increasing, (i.e., xi − 1−Fi(xi)
f i(xi)

is increasing for i = 1, 2), then the optimal mechanism allocates efficiently 
and is ex-post budget-balanced.

2. If agents are ex-ante symmetric (i.e., F1 ≡ F2), then the expected externality mechanism is optimal. It allocates efficiently, is 
ex-post budget-balanced, and ex-post individually rational.

This implies that the equivalence of Bayesian and dominant strategy incentive compatible mechanisms established by 
Gershkov et al. (2013) does not apply. They show that in a large class of mechanism design problems, for any Bayesian 
incentive compatible and interim individually rational mechanism, there exists an equivalent dominant strategy incentive 
compatible mechanism that is ex-post individually rational. However, this equivalence is established in the absence of budget 
constraints, and the above arguments imply that it cannot be extended to our setting.

Participation constraints While our general characterization of the optimal mechanism does not hold with relaxed partici-
pation constraints, these constraints are not the main driving force behind our results and the inefficiency of the optimal 
allocation. Indeed, our characterization can be obtained without participation constraints if one restricts attention to settings 
where agents are symmetric ex-ante (Shao and Zhou, 2012).

Stochastic mechanisms In the previous section we restricted attention to deterministic mechanisms in order to be able to 
analytically characterize the optimal mechanism. Deterministic mechanisms have additional benefits: They are simpler to 
implement, and more plausible in some settings (e.g., when modeling bargaining between agents).

While there are instances where the focus on deterministic mechanisms is not without loss, numerical simulations 
suggest that the induced loss in welfare is small. We generated n = 2000 random instances for three classes of distributions 
of types: Random distributions, random distributions with an increasing hazard rate, and distributions from the Weibull 
class with different shape and scale parameters such that the distribution has an increasing hazard rate. We then computed 
the optimal deterministic and stochastic mechanism for every instance. The results are summarized in Table 2 which shows, 
for each distribution class, the average and maximum welfare loss of the optimal deterministic mechanism, as a percentage 
of the welfare of the best stochastic mechanism. The fourth column shows the percentage of instances where there is no 
loss due to the restriction to deterministic mechanisms. As can be seen, instances where the deterministic constraint is 
binding appear only rarely. Further, even if this is the case, the percentage loss in expected welfare is very small. Note that 
whenever a stochastic mechanism is strictly better in our simulations, the optimal mechanism is not budget-balanced.

6. Bilateral trade

Myerson and Satterthwaite (1983) showed that one cannot implement the efficient allocation in the bilateral trade setting 
in an ex-post budget-balanced and interim individually rational way, and characterized the optimal mechanism satisfying 
these constraints. In the same environment, Hagerty and Rogerson (1987) study the set of dominant-strategy implementable 
mechanisms that are ex-post budget-balanced and individually rational, showing that essentially only posted price mecha-
nisms fulfill these conditions. However, a priori it is not clear why one should restrict the search for the optimal mechanism 
to mechanisms with a balanced budget. After all, it is conceivable that deviating from a balanced budget could improve 
incentives and therefore lead to higher welfare. In fact, Schwartz and Wen (2012) show by example that relaxing budget-
balancedness to a no-deficit constraint can improve upon posted price mechanisms. The result in this section shows that 
this holds only for stochastic mechanisms; when looking at deterministic mechanisms, the restriction to budget-balanced 
mechanisms does not reduce aggregate welfare.

Let the model and notation be as in Section 2, but assume now that agent 1 (called the “seller” from now on and indexed 
by S) is the owner of the good before participating in the mechanism (whereas agent 2 is called the “buyer” and indexed 
by B). By a buyer posted price mechanism we denote a posted price mechanism in which the buyer gets the object if and 
only if he announces a type high enough, and the seller a type that is low enough. Again, we are looking for a mechanism 
that maximizes the sum of the expected utilities of the agents, taking monetary transfers into account. The fact that in the 
bilateral trade setting the seller initially owns the good requires a stronger condition for a mechanism to be individually 
rational: now the outside option for a seller is to not participate in the mechanism and to keep the object. Hence, for a 
mechanism to be individually rational,

dS(x)xS + pS(x) ≥ xS and dB(x)xB + pB(x) ≥ 0 (IR’)

must hold for all x ∈ X .
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Fig. 3. Illustration of the proof of Theorem 2. The shaded area indicates the type profiles where the initial mechanism differs from the posted price 
mechanism with strike price gB (0) (dashed line).

Thus, a mechanism is optimal if it solves

max
M=(d,p)

∫
X

[
dS(x)xS + dB(x)xB + pS(x) + pB(x)

]
dF (x)

s. t. M satisfies IC, ND and IR’. (5)

Theorem 2. There is a buyer posted price mechanism that solves problem (5).

Proof. We first show that (IR’) implies that the seller keeps the object whenever his valuation is higher. Assume to the 
contrary that trade takes place at xS > xB . Then (IR’) for the seller implies that the seller receives at least xS and (IR’) for 
the buyer implies that he pays at most xB , violating (ND).

Recall that gB(0) denotes the smallest buyer type such that trade takes place when xS = 0, and gS(xB) denotes the 
highest seller type such that trade takes place when xB = xB . We claim that gS (xB) ≤ gB(0). Constraints (IC) and (IR’) for 
the seller imply that he receives at least a payment of gS(xB) whenever the buyer reports xB and trade takes place, in 
particular at (0, xB) (if no trade takes place at (0, xB), trade will never happen, corresponding to a posted price mechanism 
with a price above the highest possible valuation). Similarly, (IC) and (IR’) for the buyer imply that he pays at most gB (0)

whenever the seller reports 0, in particular at (0, xB). Therefore, gS(xB) > gB(0) would violate (ND) at (0, xB).
Finally, we claim that the buyer posted price mechanism with strike price gB (0) weakly dominates the given mechanism. 

To see this, note that pS(x) + pB(x) ≤ 0 by (ND) and a posted price mechanism is budget-balanced. Hence, the posted 
price mechanism dominates the old mechanism with respect to payments. Since the allocation only differs for x such that 
xB ≥ gB(0) ≥ xS and the posted price allocation rule prescribes dB (x) = 1 for such x (see also Fig. 3), the posted price 
mechanism also dominates the old mechanism with respect to the allocation rule. �

In contrast to Theorem 1, this result shows that a posted price mechanism is optimal for any type distribution. The 
difference is due to the stronger individual rationality constraint. While any allocation rule is compatible with (IR), the 
stronger constraint (IR’) in the trade setting restricts the set of allocation rules that can be implemented without a budget 
deficit. Within this smaller class of feasible allocation rules, for any distribution of types a posted price mechanism is 
optimal.

The stronger individual rationality constraint also implies that mechanisms which do not allocate the object are infeasi-
ble. This is because if the buyer does not get the object, no money can be collected to compensate the seller for losing the 
object. Therefore, assuming that the object is always allocated is without loss of generality in this setting.

7. Discussion

We have studied the trade-off between efficiency and budget-balancedness in an independent private values auction 
model. We incorporated this into the model by letting the social welfare objective function include all payments, that is, 
by maximizing residual surplus.10 We showed that, if one focuses on robust implementation in dominant strategies, an 
increasing hazard rate condition on agents’ type distributions guarantees a resolution of the trade-off completely in favor 
of a balanced budget. In addition, budget-balanced mechanisms have a very simple form and can easily be implemented as 
posted price or option mechanisms. Further, we showed without any assumption on the prior distribution of types that a 
posted price mechanism is optimal in the bilateral trade setting. Our results imply that our approach of optimal mechanism 
design yields higher welfare than approaches concentrating on the efficient allocation.

10 For other ways to analyze the frontier that describes possible ways to resolve the trade-off between efficiency and budget-balancedness, see, for 
example, Diakonikolas et al. (2012) or Tatur (2005).
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In the section on robustness we have seen that the restriction to deterministic and ex-post individually rational mech-
anisms is not crucial for our main result. Instead, it is primarily driven by the focus on strategy-proof mechanisms that 
satisfy the ex-post no-deficit constraint: Without these constraints the first-best can be achieved, implying that these two 
restrictions are relatively costly in terms of welfare.

An interesting open question is how the result generalizes to a model including more than two agents. We strongly 
believe that the optimal mechanism will still be budget-balanced. An important argument for this is that, as the number 
of agents gets large, the efficient allocation can be approximated in a budget-balanced way: in the spirit of McAfee (1992), 
allocate efficiently while ignoring one agent who then receives all payments from the other agents. This can be implemented 
by tentatively giving the object to one of the agents and then simulating a second price auction with reserve price where 
this agent sells the object to the remaining agents.
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Appendix A. Proof of Theorem 1

The following lemma enables us to approximate any mechanism with mechanisms from the class M0 .

Lemma 3. For every mechanism M = (d, p) and for every ε > 0 there exists a mechanism M̃ = (d̃, p̃) in M0 such that U (M) −
U (M̃) < ε.

Proof. Let the mechanism M = (d, p) and ε > 0 be given and let g1(x2) and g2(x1) be defined as above. Define Di := {x ∈ X :
di(x) = 1} as the set of type profiles where agent i gets the object and define D̃i similarly. Since g2 is a monotone function 
it can be approximated uniformly by a monotone and piece-wise constant function g̃2. Denote the associated allocation rule 
by d̃. By choosing the step width small enough the approximation can be done such that for given δ > 0,

‖g1 − g̃1‖∞ < δ and ‖g2 − g̃2‖∞ < δ

holds. The approximation can be chosen such that gi(x−i) = x̄i implies g̃i(x−i) = x̄i and g̃ can be chosen such that g̃2 ≤ g2, 
implying that D̃1 ⊂ D1.

Without loss of generality, we can assume that q2(x1) ≡ 0 (see Step 1 in the proof of Lemma 2). By construction of 
g̃2 and since M satisfies (ND), we can define functions q̃i(x−i) such that q̃2(x1) ≡ 0, 0 ≤ q̃1(x2) ≤ infx1 {g̃1(x2)d̃1(x1, x2) +
g̃2(x1)d̃2(x1, x2)} ∀x2 ∈ X2 and ‖q̃1 − q1‖∞ < δ. We then have:

U (d, p) − U (d̃, p̃) ≤
∫
X

q1(x2) − q̃1(x2) dF (x) +
∫
D1

x1 − g1(x2) dF (x) −
∫

D̃1

x1 − g̃1(x2) dF (x)

+
∫
D2

x2 − g2(x1) dF (x) −
∫

D̃2

x2 − g̃2(x1) dF (x)

≤ δ +
∫

D1\D̃1

x1 − g1(x2) dF (x) +
∫

D̃1

δ dF (x) +
∫

D̃2\D2

x2 − g2(x1) dF (x) +
∫
D2

δ dF (x)

≤ 3δ + B1x1δ + B2x2δ,

where Bi is an upper bound for f i(xi). Hence, by choosing δ < ε
3+B1x1+B2x2

, it follows that U (d, p) − U (d̃, p̃) < ε. �
We combine the approximation lemma with Lemma 2 in order to prove the theorem.

Proof of Theorem 1. Without loss of generality, we restrict ourselves to posted price mechanisms for agent 2. We first 
establish that U maps the set of all posted price mechanisms to a compact subset of R. Let ā = min{x̄1, ̄x2} and let a ∈ [0, ̄a]
be some price for a posted price mechanism Ma . Then U (Ma) can be written as

U (Ma) =
a∫ x̄2∫

x2dF (x) +
x̄1∫ a∫

x1dF (x) +
x̄1∫ x̄2∫

x1dF (x).
0 a 0 0 a a
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Due to the continuity of F , this function is continuous with respect to a. Since [0, ̄a] is compact, so is {U (Ma) |a ∈ [0, ̄a]}
and therefore there exists an a∗ such that U (Ma∗ ) is maximal among all posted prices.

Next, assume that the theorem is false, i.e., there exists a mechanism M and ε > 0 such that U (M) > U (Ma∗ ) + ε. Then 
apply Lemma 3 to M and ε to get a mechanism M̃ ∈M0 with U (M̃) > U (Ma∗ ). This contradicts Lemma 2, establishing the 
theorem. �
Proof of Corollary 1. The arguments in Step 1 in the proof of Lemma 2 imply that agent 1 receives no redistribution 
payments; symmetric arguments imply that agent 2 also gets no redistribution payments. Hence, all payments that are 
collected must be wasted. The result then follows from Hartline and Roughgarden (2008). �
Proof of Proposition 1. (1) Let d∗ denote an efficient allocation rule. Given a mechanism (d∗, t), let

Ui(xi) :=
x−i∫

x−i

xi · d∗
i (xi, x−i) + ti(xi, x−i)dF−i(x−i)

denote the interim expected utility, and S := −E[t1(x1, x2) + t2(x1, x2)] the expected budget surplus. Observe that∫
X

x1 · d∗
1(x1, x2) + x2 · d∗

2(x1, x2)dF (x1, x2) − S

=
∫
X

U1(x1) + U2(x2)dF (x1, x2)

= U1(0) + U2(0) +
∫
X

x1∫
0

d∗
1(s, x2)ds +

x2∫
0

d∗
2(x1, s)ds dF (x1, x2)

= U1(0) + U2(0) +
∫
X

1 − F1(x1)

f1(x1)
d∗

1(x1, x2) + 1 − F2(x2)

f2(x2)
d∗

2(x1, x2) dF (x1, x2).

Hence,

U1(0) + U2(0) + S =
∫
X

[
x1 − 1 − F1(x1)

f1(x1)

]
d∗

1(x1, x2) +
[

x2 − 1 − F2(x2)

f2(x2)

]
d∗

2(x1, x2)dF (x1, x2).

We claim that

U1(0) + U2(0) + S ≥ 0. (6)

Indeed, if U1(0) + U2(0) + S < 0 were true, then∫
X

[
xi − 1 − Fi(xi)

f i(xi)

]
d∗

i (x1, x2)dF (x) < 0

would hold for some i, as S ≥ 0 follows from no-deficit. Together with the assumption that virtual valuations are increasing, 
this would imply that∫

X

[
xi − 1 − Fi(xi)

f i(xi)

]
[1 − d∗

i (x1, x2)]dF (x) < 0.

Hence∫
X

[
xi − 1 − Fi(xi)

f i(xi)

]
dF (x) < 0,

contradicting the fact that 
∫

Xi
xi − 1−Fi(xi)

f i(xi)
dFi(xi) = 0.

Define t1(x) := tEEM
1 (x) − ∫

X2
tEEM

1 (0, s)dF2(s) and t2(x) := −t1(x). The mechanism (d∗, t) is ex-post budget balanced by 
construction (hence, S = 0); it is Bayesian incentive compatible since payments differ from the payments in the expected 
externality mechanism only by a constant. Moreover, U1(0) = 0 by construction; therefore, U2(0) ≥ 0 follows from (6), 
showing individual rationality.

(2) Optimality of the expected externality mechanism follows from the observations before Proposition 1. Ex-post in-
dividual rationality follows from the following two facts: xi ≤ x j implies tEEM

i (x) ≥ 0 by (4), and xi > x j similarly implies 
tEEM

i (x) = − 
∫ xi

x j
sdFi(s) ≥ −xi . This implies that xi · d∗

i (x) + tEEM
i ≥ 0 for all x. �
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