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Abstract

We study general economies with indivisibilities in which agents can be produ-
cers and/or consumers of multiple units of heterogeneous goods and have substi-
tutes preferences. We derive a simple tâtonnement process from a steepest descent
algorithm and use this process to construct an incentive compatible and efficient
dynamic auction. This allows us to reinterpret the price adjustment process dis-
covered by Ausubel (2006) as a steepest descent algorithm. Our results provide an
incentive compatible and efficient dynamic auction for the substitutes and comple-
ments setting introduced by Sun and Yang (2006) and the trading network economy
of Hatfield, Kominers, Nichifor, Ostrovsky and Westkamp (2013). We also provide
a variant of this auction that uses only singleton demand reports.
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1 Introduction

The idea of a tâtonnement process that tentatively adjusts prices according to current
supply and demand was formulated by Walras (1874), and has since then been used to
derive ascending iterative auctions and methods for finding market-clearing prices. Walras
also realized that a form of substitutability of demand was needed for such a process to
work. For divisible goods, a formal description of a tâtonnement process and convergence
results were first given by Samuelson (1947) and Arrow and Hurwicz (1958). In settings
with indivisible goods, the first formal tâtonnement process was an algorithm described
by Kelso and Crawford (1982) for the allocation of workers to firms. They realized that
in these settings it is sufficient for convergence that the agents’ demand satisfies the gross
substitutes condition. In subsequent papers, different algorithms were developed for the
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same condition (Gul and Stacchetti 1999, Ausubel 2006, Milgrom and Strulovici 2009).
As observed recently by Fujishige and Yang (2003), the demand function of an agent
satisfies gross substitution precisely if the valuation function that describes the agent’s
preferences is M \-concave (that is, it belongs to a class of well-behaved discrete concave
functions). In this paper, we make use of this connection to design and analyze discrete
tâtonnement processes and efficient dynamic auctions.

To be more precise, we look at economies where every agent has quasi-linear preferences
over bundles of goods. The economy may initially be endowed with arbitrary quantities
of the goods in order to model auction environments, and we assume that individuals are
endowed with a sufficient amount of money so that they will never face budget constraints
and are able to buy any bundle of goods as they wish. We allow for models where agents
have preferences over negative amounts of goods so that agents may be buyers and/or
sellers, as well as models that do not satisfy the assumption of free disposal. We use
a suitable extension of gross substitute valuation functions to multiple units of goods,
namely M \-concave valuation functions. The paper proposes a tâtonnement process based
on a steepest descent algorithm. This price adjustment process is then used to construct
an incentive compatible and efficient dynamic auction for this general economy. Based
on results from Discrete Convex Analysis, we can give simple and intuitive proofs for
the convergence and incentive properties of the dynamic auction. We also construct a
variant of this auction that uses only singleton demand reports. All auctions previously
proposed for discrete settings (starting with the seminal work by Demange, Gale and
Sotomayor 1986) instead required that agents report their entire demand sets. That is,
if a bidder is indifferent between multiple bundles at the current price he must report all
bundles. Milgrom and Strulovici (2009) emphasize that this feature makes the proposed
auctions “different from any auction process in current use”.1 Using insights about the
structure of demand, we construct an exact auction that uses singleton demand reports
and that is incentive compatible.

Applying our results to Ausubel’s (2006) model, we can reinterpret his dynamic auction
as a steepest descent algorithm. Arguing that an M \-convex function is the appropriate
extension of a gross substitutes valuation function to multiple units of goods, our price
adjustment process has the additional advantage of generating linear prices for multiple
units of goods (as in Milgrom and Strulovici 2009). Moreover, using this extension we can
accommodate agents that act as sellers and/or buyers. Allowing for sellers is important
for many real-world applications: for example, recent spectrum auctions had the goal
to reallocate spectrum rights from current owners to agents that value them more. Our
generalization provides an efficient dynamic auction for such settings.

Since we allow for models where agents can be buyers and/or sellers as well as models
that do not satisfy the assumption of free disposal, our model also accommodates the
substitutes and complements framework by Sun and Yang (2006): This setting, with two
classes of goods such that items in the same class are substitutes and items in different
classes are complements to each other, can be obtained by just “mirroring” all valuation

1Demange et al. (1986) and Milgrom and Strulovici (2009) propose approximate auctions to circumvent
this problem. While the approximate auction of Demange et al. (1986) converges to a price that is close
to a competitive equilibrium price vector if all bidders report their demand truthfully, bidders have not
necessarily an incentive to do so. The approximate auction of Milgrom and Strulovici (2009) does in
general not stop close to a competitive equilibrium price vector.
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functions along the axes of the goods in one class. Using this observation, our algorithm
generalizes the double-track adjustment process proposed by Sun and Yang (2009) to
multiple units of goods (see also Shioura and Yang 2013). Moreover, applying our dynamic
auction to this setting yields an incentive compatible and efficient dynamic auction for the
substitutes and complements framework. Our model also contains the trading network
economy of Hatfield et al. (2013) as a special case and their full substitutes condition is
equivalent to the convexity assumption we use in this paper. We therefore provide a price
adjustment process and an efficient dynamic auction for their trading network economy.

The interpretation of tâtonnement processes as discrete steepest descent algorithms
also has the advantage that statements about the algorithmic complexity of the process
can be made. Further, efficient scaling techniques can be applied which yield adjustment
processes that only need to state a strongly polynomial number of ask prices, albeit at
the cost of monotone convergence.

M \-convexity turns out to be the right notion of convexity in the discrete setting
because M \-convex functions exhibit several properties that are important for the estab-
lishment of a discrete price adjustment process. First, the class of M \-convex functions is
closed under aggregation, which implies that aggregate demand shares the same proper-
ties as every agent’s demand. Since therefore, aggregate demand is convex,2 every bundle
of goods is demanded at some price, which means that a competitive equilibrium exists.
The notion of M \-convexity is, however, too strong to be necessary for the existence of
competitive equilibria. We refer to Danilov, Koshevoy and Murota (2001) and Baldwin
and Klemperer (2013) for a complete characterization of the classes of valuation functions
that guarantee existence of an equilibrium. M \-convex functions provide, additionally,
the appropriate combinatorial properties such as convexity and submodularity of the ag-
gregate indirect utility function which are key for the (monotone) convergence of discrete
steepest descent algorithms.

Another key property that is implied by M \-convexity is that the optimal descent
direction of the indirect utility function at a given price is entirely determined by the ag-
gregate demand correspondence. Therefore, even though indirect utility cannot be elicited
directly, the steepest descent algorithm is economically suitable because it can proceed
through best response information from the agents. The algorithm can therefore be ap-
plied to construct incentive compatible and efficient dynamic auctions. This point also
highlights the link between the optimization results that were independently obtained in
economics and mathematics: Even though in economic settings the auction process has
to be described in terms of the bidders’ demand sets, and descent methods in optimiza-
tion theory are applied to convex functions directly, both approaches describe the same
algorithms.

Steepest descent methods for the design of iterative auctions are complemented by
primal-dual and linear programming algorithms (Demange et al. 1986, Gul and Stacchetti
1999, Parkes and Ungar 2000, deVries, Schummer and Vohra 2007) and related to al-
gorithms for finding stable outcomes in matching models (Gale and Shapley 1962, Ostrovski
2008).

2The appropriate notion is convex-extensibility, see Definition 3 below.
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Figure 1: Concavity and conjugacy.

Illustration: Convexity and Tâtonnement

The role of convexity and conjugacy in the establishment of a price adjustment process
can best be described visually by means of a valuation function with a continuous domain.
In order to keep things simple, we assume that the aggregate valuation function v of a
group of agents over quantities x of a single good is given (see Figure 1). Aggregate utility
is quasi-linear, and therefore a competitive equilibrium price for endowment x̄ is a price
p∗ such that x̄ maximizes the expression v(x) − p∗x, i.e., a price such that the agents
demand a quantity of precisely x̄. Alternatively, the maximization problem of the agents
can be written as maximizing the linear function (−p, 1)T (x, y) over points (x, y) such that
y ≤ v(x). Since v is concave, it is then clear that for an equilibrium price p∗, the vector
(−p∗, 1) will be perpendicular to the tangent of the convex set V = {(x, y) | y ≤ v(x)} at
the point (x̄, v(x̄)). It is then also clear that concavity of v guarantees that an equilibrium
price exists for every endowment.

In order to derive a process that converges to the equilibrium price we look at the
indirect utility at price p, which is defined as U(p) = maxx v(x) − px. If x∗ attains
the maximum, we can write v(x∗) = U(p) + px∗ and therefore U(p) is the intercept
of the tangent of the set V at the point (x∗, v(x∗)). Also, since v is concave, we can
see from Figure 1 that the value v(x) can be recovered from the intercepts U(p) via
v(x) = minp U(p) + px. This is called conjugacy and the functions v and U are said to
be conjugate to each other. Since U is defined as the maximum over a family of linear
functions, it will be convex.

If p∗ is an equilibrium price for endowment x̄, then v(x̄)− p∗x̄ = U(p∗) and therefore,
because of conjugacy, p∗ attains minp U(p) + px̄. Equilibrium prices can therefore be
found by computing a minimizer of the function h(p) = U(p)+px̄. Since U is convex, h is
convex as well, and there are well-developed algorithms for minimizing convex functions.
Some examples are steepest descent and gradient methods.

This paper demonstrates that these considerations can be applied to valuation func-
tions with discrete domains as well by using the theory of Discrete Convex Analysis. The
paper is structured as follows: Section 2 introduces the notation and basic model. Dif-
ferent restrictions on preferences that are equivalent to gross substitutes are discussed in
Section 3. Then, Section 4 covers the existence and properties of competitive equilibria.
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Section 5 presents the price adjustment process and Section 6 constructs an incentive
compatible dynamic auction. Finally, in Section 7, we apply our results and conclude in
Section 8. A brief introduction to Discrete Convex Analysis is provided in the Appendix.

2 Economy

There is a set of agents N and a set of heterogeneous goods G. The economy is endowed
with positive or negative3 quantities of goods x̄ ∈ ZG. Typically, in an auction setting, x̄
will be the vector of goods for sale and in a pure exchange economy, we will typically have
x̄ = 0. We denote by X the set of feasible aggregate consumption bundles and assume
that this set is finite.4 Each agent i ∈ N has a valuation function vi : X → R∪{−∞} over
bundles of goods (where multiple units of a good are allowed).5 We extend the domain
of the valuation function without loss of generality to ZG by setting vi(x) = −∞ for all
x ∈ ZG \ X. Agents have quasi-linear utilities. In particular, if linear prices p ∈ RG

are given, agent i derives utility ui(x, p) = vi(x) − 〈p, x〉 from bundle x ∈ ZG. Agent i’s
indirect utility function is defined as

Ui(p) = max
x∈X

vi(x)− 〈p, x〉

for all p ∈ RG. The demand correspondence Di(p) is the set of maximizers in the expression
above.

Definition 1. A competitive equilibrium is an allocation of goods xi ∈ ZG, i ∈ N with∑
i∈N x

i = x̄, together with a price vector p∗ ∈ RG such that xi ∈ Di(p
∗) for every agent

i ∈ N .

3 Preferences and Discrete Concavity

In settings where only one unit of every good is available and where there is no produc-
tion, the gross substitutes property has turned out to be sufficient for the existence of
competitive equilibria and the design of price adjustment processes. However, when mul-
tiple units of a good are available, this condition is too weak. In this section we provide a
sensible generalization of the gross substitutes condition to our setting. The following is
a definition of the gross substitutes property, naively adapted to multiple units of goods:

Definition 2. The valuation vi satisfies weak substitutes (wGS)6 if for every pair of
prices p ≤ p′, and every x ∈ Di(p), there exists some x′ ∈ Di(p

′) such that xj ≤ x′j for
every j for which pj = p′j.

3Negative endowments are important for the application to the double-track adjustment process by
Sun and Yang (2009), see Section 7.

4This is a technical restriction that is satisfied in all auction settings and holds in environments with
producers if it is infeasible to produce infinite quantities of a good.

5We will assume that vi is integer-valued from Section 5 on.
6Historically, gross substitution is a condition on the demand correspondence of an agent. However,

through the specific definition of Di above, it can be defined in terms of the valuation function vi. The
same applies to the other definitions given in this section.
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Figure 2: Non-existence of competitive equilibria: There is no price such that the agent
demands a quantity of one.

To see why this condition is too weak for the existence of a competitive equilibrium,
note that it is vacuous for the case of only one good. See the example in Figure 2 for an
illustration of non-existence of an equilibrium (one good, one agent). The figure suggests
that a form of concavity is required for the existence of a competitive equilibrium. Our
requirement on valuation functions (Assumption 1 below) implies that the function is
concave in the following sense. Also see Figures 4a and 4b for an illustration.

Definition 3. A valuation function vi is concave-extensible if it coincides with its concave
closure v̄i : RG → R ∪ {−∞}, given by

v̄i(x) = inf
p∈RG,α∈R

{〈p, x〉+ α | 〈p, x〉+ α ≥ vi(z) ∀z ∈ ZG},

on the set of integer vectors, i.e., if vi(x) = v̄i(x) for all x ∈ ZG.

When restricted to the unit cube {0, 1}G, there are several properties that are equival-
ent to gross substitutes: For instance, a valuation function satisfies the gross substitutes
condition if and only if it satisfies the step-wise gross substitutes condition (Danilov,
Koshevoy and Lang 2003):

Definition 4. Valuation function vi satisfies step-wise gross substitutes (SWGS) if for
any p ∈ RG, x ∈ Di(p) and j ∈ G, we either have

(i) x ∈ Di(p+ δ1j) for all δ ≥ 0 or

(ii) there is some δ ≥ 0 and x′ ∈ Di(p+ δ1j) with x′j = xj − 1 and x′−j ≥ x−j.
7

The second property which is on the unit cube equivalent to gross substitutes is the
single-improvement property (Gul and Stacchetti 1999):

Definition 5. The valuation function vi satisfies the single-improvement property, if
for any price p, and bundles x, y such that ui(y, p) > ui(x, p), there exists a bundle x′

such that ui(x
′, p) > ui(x, p) and x′ = x + 1j − 1k with j ∈ supp+(y − x) ∪ {0} and

k ∈ supp–(y − x) ∪ {0}.8

Murota and Tamura (2002) show that for general valuation domains, a valuation func-
tion satisfies the single-improvement property if and only if it is concave-extensible and
satisfies step-wise gross substitutes. Therefore, these properties are suitable generaliza-
tions of gross substitutes to multiple units of goods.

7 We denote by 1S ∈ RE the characteristic vector that equals 1 for e ∈ S and 0 otherwise. We write
1e = 1{e} and 10 = (0, ..., 0).

8We define the negative and positive support of a vector x ∈ RG as supp–(x) = {g ∈ G|x(g) < 0} and
supp+(x) = {g ∈ G|x(g) > 0}.
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Assumption 1. For every agent i, the valuation function vi is concave-extensible and
satisfies the step-wise gross-substitutes property. Equivalently, vi satisfies the single-
improvement property.

The interpretation that an agent with a valuation function satisfying this requirement
views the different goods as substitutes remains valid also for multiple units. First, on the
unit cube, valuations satisfying Assumption 1 are precisely those that satisfy the gross
substitutes property as defined by Kelso and Crawford (1982). Second, for non-negative
goods vectors, these valuations are precisely the strong substitutes valuations as defined
in Milgrom and Strulovici (2009). A valuation satisfies strong substitutes if, when every
unit of every good is treated as a separate good, the valuation satisfies gross substitutes
with respect to them.

It is also known (Fujishige and Yang 2003, Murota and Tamura 2002) that a function
satisfies Assumption 1 if and only if it is M \-concave. These functions form a class of
well-behaved concave functions that play an important role in Discrete Convex Analysis
and exhibit combinatorial properties that allow the design of an iterative tâtonnement
process. An introduction to M \-concave functions is given in the appendix. For the reader
unfamiliar with Discrete Convex Analysis, the appendix also provides a brief exposition
of the main results about discrete convex functions that are used in the next two sections.
A completely self-contained treatment of the topic can be found in Murota (2003).

4 Competitive Equilibrium

This section is concerned with the existence and properties of competitive equilibria. As
we show below, existence of competitive equilibria is a property of the aggregate valuation
function: If it is concave in the sense that the superdifferential is always non-empty, then
an equilibrium exists for every endowment (also see Danilov et al. 2001, Baldwin and
Klemperer 2013). This is always fulfilled for integrally convex functions and M \-concave
functions in particular. For the case of free disposal, we also show that equilibrium prices
will always be non-negative.

The definition of the indirect utility function Ui(p) and the concave conjugate v◦i (p) =
infx∈X{〈p, x〉−vi(x)} for p ∈ RG implies Ui = −v◦i .9 Let vN denote the aggregate valuation
function of all agents in N , i.e.,

vN(x) = sup
{xi}i∈N

{∑
i∈N

vi(x
i)

∣∣∣∣∣∑
i∈N

xi = x

}
.

This aggregate valuation function is just the convolution (which is defined in (A.6) in the
appendix) of all the agents’ valuation functions. Then, writing UN for the indirect utility
function of the whole group of agents, we get

UN = −v◦N = −
∑
i∈N

v◦i =
∑
i∈N

Ui (1)

by (A.7). The aggregate demand of all agents DN(p) is defined as the set of demands
attaining UN(p). This allows us to rephrase the definition of competitive equilibrium.

9We define the discrete concave conjugate v◦Zi as the restriction of v◦i to ZG.
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Proposition 1. Price vector p∗ is a competitive equilibrium price vector if and only if
x̄ ∈ DN(p∗).

Proof. First, let xi ∈ Di(p
∗) and

∑
i∈N x

i = x̄. Then Ui(p
∗) = vi(x

i) − 〈p∗, xi〉 ≥
vi(x

i) − 〈p∗, yi〉 for all allocations {yi}i∈N ,
∑

i∈N y
i = x̄. Summing up these inequalities

implies
∑

i∈N vi(x
i) ≥

∑
i∈N vi(y

i) (cf. First Welfare Theorem) and therefore vN(x̄) =∑
i∈N vi(x

i).
Using (1), we have

UN(p∗) =
∑
i∈N

[vi(x
i)− 〈p∗, xi〉] = vN(x̄)− 〈p∗, x̄〉,

which implies x̄ ∈ DN(p∗).
Conversely, let x̄ ∈ DN(p∗). We get from the definition of vN an allocation x̄ =

∑
i∈N x

i

with vN(x̄) =
∑

i∈N vi(x
i). Then we get∑

i∈N

Ui(p
∗) = UN(p∗) = vN(x̄)− 〈p∗, x̄〉 =

∑
i∈N

[vi(x
i)− 〈p∗, xi〉],

where we in turn use (1), x̄ ∈ DN(p∗), and the definition of vN . Since Ui(p
∗) ≥ vi(x

i) −
〈p∗, xi〉 for all i ∈ N , these inequalities need to hold with equality and therefore xi ∈ Di(p

∗)
for all i ∈ N .

The proof also implies that DN(p) is equal to the Minkowski sum
∑

i∈N Di(p), which
is defined as A + B = {a + b | a ∈ A and b ∈ B}. The proposition indicates that
the existence of competitive equilibria is a property of the aggregate valuation function
vN . If it is concave in the sense that for every endowment x̄ the superdifferential at x̄ is
non-empty, then a competitive equilibrium is guaranteed to exist (see the appendix for a
definition of the superdifferential). Since, as the convolution of M \-concave functions, vN
is M \-concave, this is the case in our setting.

Theorem 1. In the economy defined above, if the valuation function of every agent sat-
isfies Assumption 1 and x̄ ∈ dom vN , a competitive equilibrium exists.10

Proof. Since vi is M \-concave for all i ∈ N , the aggregate valuation function vN is also
M \-concave by (A.7). Also note that for p ∈ ZG and x ∈ dom vN , we have x ∈ DN(p)⇔
p ∈ ∂′vN(x). By Theorem A.1 (i) in the Appendix, for M \-concave functions ∂′vN(x̄)
is non-empty and therefore there exists p∗ such that x̄ ∈ DN(p∗), that is, a competitive
equilibrium exists.

Remark 1. Theorem A.1 also implies that the set of competitive equilibrium prices is an
L\-convex set. In particular this means that it is a lattice.

Although we do not need to impose free disposal for our results, the following pro-
position establishes the intuitive fact that, whenever there is free disposal, prices are
non-negative in equilibrium.

Proposition 2. Assume that vi is non-decreasing for all i ∈ N , that is vi(x) ≤ vi(y) for
x ≤ y. Then for every competitive equilibrium price p∗ we have p∗ ≥ 0.

10We denote the effective domain by dom vi = {z ∈ ZE | vi(z) 6= −∞}
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Proof. We first show that if v1 and v2 are non-decreasing, then v1 � v2 is non-decreasing.
Then by induction it follows that vN is non-deceasing. So let x ≤ y and x1 + x2 = x such
that (v1 � v2)(x) = v1(x1) + v2(x2). Since v2 is non-decreasing, we have

v1(x1) + v2(x2) ≤ v1(x1) + v2(x2 + [y − x]).

Then (v1 � v2)(x) ≤ (v1 � v2)(y) follows because y = x1 + x2 + [y − x].
Now take j ∈ G and define y = x̄+ 1j. Since p∗ ∈ ∂′vN(x̄), we have vN(x̄)− 〈p∗, x̄〉 ≥

vN(ȳ)− 〈p∗, y〉. Therefore

0 ≤ vN(y)− vN(x̄) ≤ 〈p∗, y − x̄〉 = p∗j ,

which completes the proof.

5 Tâtonnement

From now on we assume that valuations are integer-valued, i. e. vi : ZG → Z ∪ {−∞}.
Conjugacy between the aggregate valuation and indirect utility function helps us to easily
see that the set of competitive equilibrium prices coincides with the set of minimizers of a
Liapunov function (Ausubel 2006, Milgrom and Strulovici 2009). Since this function will
be L\-convex, steepest descent algorithms can be used for the computation of competitive
equilibrium prices. In this section, we present such an algorithm and analyze its conver-
gence properties. We also make use of the fact that the subdifferential of an L\-convex
function determines its slope to show how one can compute the descent direction via the
demand sets. Finally we provide an alternative algorithm that uses as input singleton
demand reports. We will use these results to construct an incentive compatible dynamic
auction in the next section.

Proposition 3. Price vector p∗ supports endowment x̄ in competitive equilibrium if and
only if it minimizes the function h(p) = 〈p, x̄〉 + UN(p). Moreover, h is minimized by an
integer price vector.

Proof. By Proposition 1, a price vector p∗ supports x̄ in competitive equilibrium if and
only if

vN(x̄)− 〈p∗, x̄〉 = UN(p∗) = −v◦N(p∗).

By conjugacy we know that the concave extension v̄N coincides with its biconjugate, i. e.
v̄N = v◦◦N and therefore vN(x̄) = infp{〈p, x̄〉 − v◦N(p)}. Hence, necessity follows since p∗

attains the infimum and therefore minimizes h. Conversely, if p∗ minimizes h, it attains
the infimum and therefore constitutes an equilibrium price vector.

Moreover, by discrete conjugacy (Theorem A.3 in the appendix) we know that vN
coincides with its discrete biconjugate, i. e. vN = v◦Z◦ZN , and hence vN(x̄) = infp∈ZG{〈p, x̄〉−
v◦ZN (p)}. Since h is integer-valued on ZG, it attains its infimum on ZG.

For general valuation functions, a price that minimizes h is often referred to as a
quasi-equilibrium (Milgrom and Strulovici 2009). Theorem A.3 in the Appendix implies
that Ui and hence h are integral polyhedral L\-convex. In the following we will present a
steepest descent algorithm that minimizes the function h and therefore constitutes a price
adjustment process for the economy considered. The correctness of the algorithm follows
from the following optimality criterion for the minimization of L\-convex functions:
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Proposition 4. For an L\-convex function h we have that h(p) ≤ h(q) for all q ∈ ZG if
and only if h(p) ≤ h(p± 1S) for all S ⊆ G.

Proof. We only need to show sufficiency. With regard to Proposition A.1 in the Appendix
we need to show that h(q) ≥ h(p) for all q ∈ ZG with ||q− p||∞ ≤ 1. Every such q can be
written as q = p+ 1X − 1Y for suitable disjoint X, Y ⊆ G. Then submodularity of h and
local optimality of p imply

h(p) + h(p+ 1X − 1Y ) ≥ h(p+ 1X) + h(p− 1Y ) ≥ 2h(p),

which completes the proof.

It is therefore straightforward to use the following algorithm for minimizing h: Start
with an arbitrary price vector p and search for a subset of goods S and ε ∈ {−1, 1}
such that h(p + ε1S) − h(p) is minimal. If no subset S and ε can be found such that
this difference is negative, p is a competitive equilibrium. Otherwise update the price to
p + ε1S and iterate. Since we have integer valuations, h decreases by at least 1 in every
step and therefore (since a competitive equilibrium exists) the algorithm converges after
finitely many steps.11 It is summarized in Algorithm 1.

Algorithm 1 Steepest Descent

1. Pick an arbitrary price vector p ∈ domh = ZG.
2. while there exists ε ∈ {−1, 1} and S ⊆ G with h(p+ ε1S) < h(p) do
3. Choose S, ε such that h(p+ ε1S)− h(p) is minimized.
4. Set p := p+ ε1S.
5. end while
6. p is a competitive equilibrium price vector.

Monotone Convergence

Although we have already seen that the algorithm converges globally, it is often desirable
to have an algorithm that converges monotonically (i.e., for iterative combinatorial auc-
tions). The following tie-breaking rule implies that if the algorithm starts with a price
that is below every equilibrium price and always sets ε = +1, then it monotonically
converges to the lowest equilibrium price:

Choose the (unique) minimal minimizer S of h(p+ 1S)− h(p). (2)

A unique minimal minimizer exists because h is submodular.
Let p∗ be the lowest equilibrium price (such a price exists since the set of competitive

equilibrium prices is a lattice). Convergence follows if the modified algorithm never stops
strictly below p∗ and always stays below p∗. The former property is a consequence of
the integral convexity of h; the latter property follows from the tie-breaking rule and the
submodularity of h.

Lemma 1. If the modified algorithm stops at p, then p ≥ p∗.

11In fact, this argument implies the convergence of any descent algorithm.
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Proof. Assume that the algorithm stops at p but p < p∗. Then there exists λ ∈ (0, 1)

such that p′ = λp + (1 − λ)p∗ has the property that ||p′ − p||∞ < 1. The integral

neighborhood N(p′) defined in (A.4) consists of vectors p+ 1X for subsets X ⊆ G. Since

the algorithm stopped at p, h(p + 1X) ≥ h(p) for all these subsets. Hence, by the

definition of the local convex extension (A.5), h̃(p′) ≥ h̃(p). But this is a contradiction

because h̃(p′) < h̃(p) = h(p) due to the convexity of h̃, which holds by integral convexity

of h.

Lemma 2. If p′ = p+ 1S is chosen by the modified algorithm at p ≤ p∗ then p′ ≤ p∗.

Proof. Submodularity of h implies

h(p∗) + h(p′) ≥ h(p∗ ∨ p′) + h(p∗ ∧ p′).

Since p∗ is an equilibrium price vector, we have h(p∗) ≤ h(p∗ ∨ p′), and hence h(p′) ≥
h(p∗ ∧ p′). Now assume that there is a j ∈ G with p′j > p∗j . Then p∗ ∧ p′ = p + 1T for
T ⊆ S \ {j}, which contradicts the minimality of S prescribed by the tie-breaking rule
(2).

For instance, if free-disposal can be assumed, then every competitive equilibrium price
is always non-negative and hence the monotone tâtonnement process can always be started
with a price of p = 0 and converges to the lowest equilibrium price.

We get the following summarizing result:

Theorem 2. If the valuation function of every agent i ∈ N satisfies Assumption 1, then
for every endowment x̄ ∈ ZG and every initial price vector p ∈ ZG, Algorithm 1 converges
to a competitive equilibrium price vector.

Further, if the starting price vector is lower than every equilibrium price, then the
monotonic version of Algorithm 1 converges to the lowest competitive equilibrium price.

Eliciting Descent Directions

In practice, for instance when using the tâtonnement process as an iterative auction,
it is impractical to elicit the values of the indirect utility functions Ui(p) and there-
fore impossible to evaluate h(p + ε1S). However, when every agent reports his demand
correspondence Di(p) at the current price p, it is possible to compute the difference
h(p+ ε1S)− h(p) for every ε and S (Ausubel 2006). The intuitive reason for this is that
for an L\-convex function h, the difference between the function values at p + ε1S and p
can be constructed from the subdifferential ∂h(p) of h at the point p. The following lemma
demonstrates that this subdifferential corresponds to the set of excess supply vectors.

Lemma 3. For any p ∈ ZG we have x ∈ DN(p) ⇔ x̄− x ∈ ∂h(p).

Proof. By Proposition 1, x ∈ DN(p) is equivalent to p being a competitive equilibrium
price vector for endowment x, which by Proposition 3 is equivalent to

UN(p) + 〈p, x〉 ≤ UN(q) + 〈q, x〉

for all q. This is just the definition of −x ∈ ∂UN(p), which by the definition of h is
equivalent to x̄− x ∈ ∂h(p).
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Proof. This is a consequence of the conjugacy between vN and UN . First note that by
the definition of h, we have x̄ − x ∈ ∂h(p) ⇔ −x ∈ ∂UN(p). Next, x ∈ DN(p) is
equivalent to UN(p) = vN(x) − 〈p, x〉. Since vN(x) = infq{UN(q) + 〈q, x〉} by conjugacy,
this is equivalent to

UN(p) + 〈p, x〉 ≤ UN(q) + 〈q, x〉 ∀q ∈ ZN .

This is in turn just the definition of −x ∈ ∂UN(p), which completes the proof.

Since h is an L\-convex function, the difference between h(p + ε1S) and h(p) can be
computed via the support function of its subgradient ∂h(p) at p, evaluated in the direction
of ε1S:

Lemma 4. Let g be an integer-valued polyhedral L\-convex function, p ∈ dom g and
S ⊆ G, ε ∈ {−1, 1}. Then

g(p+ ε1S)− g(p) = max
y∈∂g(p)

〈y, ε1S〉.

For a proof see, for example, Proposition 7.44 in Murota (2003). The difference h(p+
ε1S)− h(p) can now be computed as follows. By Lemma 3,

max
y∈∂h(p)

〈y, ε1S〉 = max
x∈DN (p)

〈x̄− x, ε1S〉

and therefore, we have established the following proposition:

Proposition 5. Assume that x∗ solves the optimization problem

min
x∈DN (p)

〈x, ε1S〉. (3)

Then, by Lemma 4,
h(p+ ε1S)− h(p) = 〈x̄− x∗, ε1S〉.

The optimization problem (3) can be decomposed by choosing xi∗ ∈ arg minxi∈Di(p)〈xi, ε1S〉
for every agent separately and then setting x∗ =

∑
i∈N x

i∗, since the objective function is
linear and DN(p) is the Minkowski sum of the sets Di(p).

12 Also, since the sets Di(p) are
M \-convex, the greedy algorithm provides a way to maximize a linear objective function
over Di(p) efficiently (Dress and Wenzel 1990).

While the method described in Proposition 5 can be used to evaluate h(p+ε1S)−h(p),
it remains to find ε ∈ {−1, 1} and S such that this term is minimized. Since h is L\-
convex and in particular submodular, h(p+ε1S)−h(p) is submodular in (ε, S), and efficient
algorithms for minimizing submodular set functions can be used (Schrijver 2000).

Remark 2. If one does not insist on a consecutive price trajectory but instead allows
the ask price to jump around freely, the price adjustment algorithm can be scaled. The
resulting algorithm then finds a competitive equilibrium in strongly polynomial time (see
Murota 2003).

The following example illustrates how the descent direction can be derived from de-
mand reports for the case of one agent.

12Ausubel (2006) gives a different proof of a version of Proposition 5 which makes use of the single-
improvement property that vN satisfies since it is M \-concave. Instead, we use the L\-convexity of UN

and h.
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Figure 3: Illustration of the relation between demand correspondence and
subdifferential in Example 1.

Example 1. Assume that there is one agent with the valuation function v depicted in
Figure 3a and that the economy is endowed with x̄ = 2 units of one good. The correspond-
ing function h(p) = 2p + U(p) is shown in Figure 3b. Let the price adjustment process
start with p = 3. At this price, the agent will demand quantities of either 0 or 1. In ac-
cordance with Lemma 3, the subdifferential of h at p = 3 is {1, 2}. Slopes in the direction
of −1 and 1 are given by 1 · (−1) = −1 and 2 · 1 = 2, respectively, and therefore the price
should be adjusted downwards. At p = 2, the agent only demands a quantity of 1 and the
price should be lowered further. At p = 1, the agent demands D(1) = {1, 2, 3}, and the
subdifferential of h at p = 1 is {−1, 0, 1}. Since the slope in the direction of −1 and 1
is (−1) · (−1) = 1 and 1 · 1 = 1, respectively, we know that p = 1 is a minimum of the
function h and that we have found an equilibrium.

Singleton-based tâtonnement

The previous development uses the fact that descent directions of a convex function can be
derived from knowledge of its complete subdifferential correspondence. This fact has been
used in previous auction formats but relies on the knowledge of the complete aggregate
demand correspondence (see also Gul and Stacchetti 2000, Ausubel 2006). Milgrom and
Strulovici (2009) however emphasize that in all practical auctions that are currently used,
bidders only report one desired bundle at a given price and not their entire demand sets.
According to their argument, none of the proposed auctions for discrete objects can be
implemented under current practices.

We now suggest a price adjustment process that uses only singleton demand reports,
thereby corresponding to common auction designs, but that is nonetheless guaranteed to
stop at a competitive equilibrium. Let dN(p) denote an arbitrary selection from DN(p).
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Algorithm 2 Singleton-based algorithm

1. Pick an arbitrary price vector p ∈ ZG.
2. while there exists ε ∈ {−1, 1} and S ⊆ G with 〈x̄− dN(p), ε1S〉 < 0 such that (ε, S)

has not been chosen in this iteration do
3. Choose such a pair S, ε.
4. if 〈x̄− dN(p+ ε

2
1S), ε

2
1S〉 < 0 then

5. Set p := p+ ε1S.
6. else
7. Set p := p.
8. end if
9. end while

10. p is a competitive equilibrium price vector.

If agents report only singleton demands, their reported demands might not be market-
clearing even at a competitive equilibrium price. The above algorithm therefore has to
use additional information to determine how to adjust prices and when to stop. This
information is obtained by eliciting demand at additional prices and using the structure
of the indirect utilities implied by convexity.

Theorem 3. If the valuation function of every agent i ∈ N satisfies Assumption 1, then
for every endowment x̄ ∈ ZG and every initial price vector p ∈ ZG, Algorithm 2 converges
to a competitive equilibrium price vector.

Proof. Note that for any ε ∈ {−1, 1} and S ⊆ G, maxy∈∂h(p)〈y, ε1S〉 = 〈x, ε1S〉 for
x ∈ ∂h(p + ε

2
1S): Convexity of h implies that maxy∈∂h(p)〈y, ε1S〉 ≤ 〈x, ε1S〉 and a strict

inequality would contradict Lemma 4.
If the price is adjusted from p to p+ ε1S it holds that 〈x̄− dN(p+ ε

2
1S), ε1S〉 < 0. By

Lemma 3, x̄− dN(p+ ε
2
1S) ∈ ∂h(p+ ε

2
1S), which implies

h(p+ ε1S)− h(p) = 〈x̄− dN(p+
ε

2
1S), ε1S〉 < 0.

Hence, the value of h decreases by at least one for every price change and the algorithm
terminates after finitely many iterations.

If the algorithm stops at p, it holds that for every ε ∈ {−1, 1} and S ⊆ G,

h(p+ ε1S)− h(p) ≥ 0.

By Proposition 4, p is a global minimizer of h and hence p supports endowment x̄ in
competitive equilibrium by Proposition 3.

6 Incentive Compatibility

In this section we show how the above algorithms can be used to construct incentive
compatible dynamic auctions.

The auction is modeled as a dynamic game in discrete time with mandatory par-
ticipation. Each period t the auctioneer announces a price p(t). Each player i then
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reports her set xi(t) ⊂ ZG of optimal consumption bundles. Let H i
t denote the his-

tory of play before period t that is observable to player i. This could for example be
H i
t = Ht = {p(s) and xj(s) : 0 ≤ s < t and j ∈ N}. A strategy σi for player i is then

a sequence of mappings σit : ZG ×H i
t → 2ZG

that select for each period, each price, and
each history the subset of bundles that are demanded. Denote by Σi the set of strategies.

Given price p(t) and the reports in period t, the auctioneer runs one iteration of
Algorithm 1 to determine the price p(t+ 1) for the next period and computes

xi∗(t) ∈ arg min
x∈xi(t)

〈x, p(t+ 1)− p(t)〉.

The game then moves to the next period. If the algorithm returns a competitive equilib-
rium in period T , the game ends.13 Each player receives an allocation corresponding to
this competitive equilibrium price vector and makes a payment

ai(T ) =
T−1∑
t=0

[∑
j 6=i

〈xj∗(t), p(t+ 1)− p(t)〉

]
− 〈p(T ), x̄− xi∗(T )〉.

We say that bidder i bids sincerely relative to utility function vi if, at every time t,
her bid xi(t) equals Di(p(t)).

Theorem 4. Sincere bidding by every bidder is an ex post perfect equilibrium of the
auction game.

Proof. Fix sincere reports for all agents except agent i. Given this fixed behavior by all
other agents, any strategy σi ∈ Σi induces a list of reports x̂i(t), which yields payoff
vi(x̂

i∗(T ))− ai(T ).
Since vj is M \-concave, Uj = −v◦j is L\-convex. Lemma 4 therefore implies that

Uj(p(t+ 1))− Uj(p(t)) = −〈xj∗(t), p(t+ 1)− p(t)〉 for all j 6= i. We therefore get

vi(x̂
i∗(T ))− ai(T )

=vi(x̂
i∗(T )) +

T−1∑
t=0

[∑
j 6=i

Uj(p(t+ 1))− Uj(p(t))

]
+ 〈p(T ), x̄− x̂i∗(T )〉

=vi(x̂
i∗(T )) +

∑
j 6=i

[Uj(p(T ))− Uj(p(0))] + 〈p(T ), x̄− x̂i∗(T )〉

=vi(x̂
i∗(T )) +

∑
j 6=i

[
vj(x

j∗(T ))− Uj(p(0))
]

≤
∑
j∈N

vj(x
CE)−

∑
j 6=i

Uj(p(0)),

where the last equality uses that x̄ = x̂i∗(T )+
∑

j 6=i x
j∗(T ) if the algorithm stops in period

T and xCE denotes a competitive equilibrium allocation for the true preferences. The final
inequality follows from the First Welfare Theorem.

13If the algorithm never stops, we assign each agent an payoff of −∞. By adjusting the payments we
could dispense with this penalty and induce agents to participate voluntarily. However, since our setting
includes producers (and in particular the Myerson-Satterthwaite setting), this will in general create a
budget deficit for the designer.
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Reporting truthfully achieves equality in the above expression because the algorithm
then chooses a competitive equilibrium with respect to the true preferences and therefore
sincere bidding is an ex post perfect equilibrium.

An analogous construction can be used for an auction that relies on Algorithm 2.
Thereby we can construct an dynamic auction that requires bidders only to report one of
their preferred bundles.

7 Applications

In this section we demonstrate how different models from the literature fit in our frame-
work and how our results can be applied to them.

Ausubel’s Auction for Heterogeneous Goods

In a seminal paper, Ausubel (2006) developed a price adjustment process for auction set-
tings with indivisible goods where agents’ preferences satisfy the gross substitutes prop-
erty. The auction proceeds through the minimization of a Lyapunov function and the
analysis in this paper is heavily inspired by this. Conversely, Ausubel’s (2006) auction is
an important special case of our adjustment process:

Corollary 1. Assume that agents have valuation functions over the unit cube {0, 1}G and
that the economy is endowed with one unit of each good (x̄ = 1G). Then the tâtonnement
process outlined in Section 5 describes the discrete price adjustment process presented in
Ausubel (2006).

Thus, our model generalizes Ausubel’s model in that it works for preferences over
arbitrary positive and/or negative quantities of every good, as well as any initial endow-
ment. While positive quantities other than one can be simulated in Ausubel’s framework
by modeling every unit as a separate good, the auction then results in non-linear prices.
In contrast, our algorithm generates linear prices for arbitrary quantities.

Milgrom and Strulovici (2009) also generalize Ausubel to multiple units of goods and
introduce the strong substitutes condition, which, for positive quantities, is equivalent to
Assumption 1. Therefore, our work also generalizes Milgrom and Strulovici (2009) by
allowing for negative quantities and therefore for the possibility to model producers.

Our framework can also be applied to the set of preferences that are used in the
Product-Mix Auction introduced by Klemperer (2010), since these preferences are a spe-
cial case of gross substitutes.

Gross Substitutes and Complements

The double-track adjustment process presented in Sun and Yang (2009) is a special case
of the price adjustment process outlined above. We start by recalling the gross substitutes
and complements condition. In the model introduced by Sun and Yang (2006), the set of
goods is partitioned into two sets G = G1 tG2.
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Definition 6. A valuation vi : {0, 1}G → R satisfies the weak/ordinary gross substitutes
and complements (GSC) condition, if, given some price vector p ∈ RG, some good14

j ∈ Ga, and δ > 0, the following holds: For every x ∈ Di(p) there exists x′ ∈ Di(p+ δ1j)
such that for all k 6= j, we have xk ≤ x′k if k ∈ Ga and xk ≥ x′k if k ∈ Gb.

We show that every valuation that satisfies the GSC condition can be transformed
into a valuation that satisfies the GS condition by reversing the sign of every good in G2.
Assume that the goods are ordered such that the goods in G1 come before the goods in
G2. Then the transformation can be described by applying the matrix

M =

(
I|G1| 0

0 −I|G2|

)
,

where I|Ga| is the identity matrix of dimension |Ga|. Using this transformation we can
define the transformed valuation function M∗vi through M∗vi(x) = vi(Mx). The trans-
formed indirect utility M∗Ui and demand correspondence M∗Di are defined using the
transformed valuation function.

Lemma 5. We have x ∈ Di(p) if and only if M−1x ∈M∗Di(Mp).

Proof. By definition, we have x ∈ Di(p) if and only if vi(x)− 〈p, x〉 ≥ vi(x
′)− 〈p, x′〉 for

all x′ ∈ dom vi. By substituting x = My and x′ = My′, this is equivalent to

vi(My)− 〈p,My〉 ≥ vi(My′)− 〈p,My′〉
⇔ M∗vi(y)− 〈Mp, y〉 ≥M∗vi(y

′)− 〈Mp, y′〉 ∀y ∈ domM∗vi,

which in turn means that y = M−1x ∈M∗Di(Mp).

Proposition 6. Let vi : {0, 1}G → R. Then vi satisfies GSC if and only if M∗vi satisfies
wGS (i.e., is M \-concave).

Proof. First note that wGS is equivalent to a version where the price of only one good is
increased. We show equivalence to this modified definition.

Assume that vi satisfies GSC. Let p ∈ RG, δ > 0 and j ∈ G1. Define p′ = p + δ1j
and let x ∈ M∗Di(p). We need to find x′ ∈ M∗Di(p

′) such that for k 6= j, xk ≤ x′k. By
Lemma 5 we know that y = Mx ∈ Di(Mp). Also, since j ∈ G1, M(p+ δ1j) = Mp+ δ1j.
Since vi satisfies the GSC condition, we know that there exists y′ ∈ Di(Mp + δ1j) such
that for all k 6= j, we have yk ≤ y′k if k ∈ G1 and yk ≥ y′k if k ∈ G2.

We claim that x′ = M−1y′ satisfies the requirements. First, by Lemma 5, x′ ∈
M∗Di(p + δ1j). Now take some good k 6= j. If k ∈ G1 then xk = yk and x′k = y′k and
therefore xk ≤ x′k. If k ∈ G2, then xk = −yk and x′k = −y′k and therefore xk = −yk ≤
−y′k = x′k.

The argument is similar for the case where j ∈ G2 and also sufficiency can be shown
analogously.

Proposition 6 motivates the following definition of generalized gross substitutes and
complements for multiple units of goods (cf. Baldwin and Klemperer 2013, Shioura and
Yang 2013):

14In this definition, a and b are set to 1 and 2, or 2 and 1, respectively.
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Definition 7. Valuation vi satisfies the generalized gross substitutes and complements
(GGSC) condition, if M∗vi is M \-concave.

With this definition, existence of competitive equilibria follows immediately: For a set
of valuation functions {vi}i∈N that satisfy GGSC and endowment x̄, consider the modified
economy {M∗vi}i∈N with endowment Mx̄. Since {M∗vi}i∈N are M \-concave, there exists
a competitive equilibrium price vector p∗, that is, Mx̄ ∈M∗DN(p∗). Then, by Lemma 5,
x̄ ∈ DN(Mp∗), so Mp∗ is a competitive equilibrium price vector for the original economy.

We note that the application of our results via the described transformation above
requires us to be able to deal with non free disposal valuations. Specifically, if a valuation
vi satisfies free disposal then M∗vi has “anti free disposal” for goods in G2. It follows
as in Proposition 2 that the price p∗j for j ∈ G2 is non-positive, and therefore Mp∗j is
non-negative.

The above transformation also allows us to describe the double-track price adjustment
process by Sun and Yang (2006) in terms of the algorithm from Section 5: The algorithm
is run on the modified economy {M∗vi}i∈N and Mx̄ (call it internal representation). If
we transform this algorithm back to the original economy (call it external representation),
we get the price adjustment process described in Sun and Yang (2009). In particular,

(i) if the current internal price is Mp, the price p is presented to the agents. If the
internal price for some good in G2 increases, then the external price decreases and
vice versa.

(ii) if an agent indicates that he demands bundle x, then M−1x is used for the internal
calculation of the next price.

(iii) if the monotone convergence algorithm is used internally, the starting price has to
be set such that it is below every competitive equilibrium price. In the original
economy, this means that the price for goods in G1 has to be set to the lowest and
the price for goods in G2 to the highest possible level. Then, since the algorithm
converges monotonically in the internal representation, this means that the real
price for goods in G1 increases whereas the real price for goods in G2 decreases.

(iv) since the set of (internal) equilibrium prices is a lattice, the set of transformed
equilibrium prices forms a “generalized lattice” as defined by Sun and Yang (2009).

Moreover, the result in Section 6 provides an incentive compatible dynamic auction.
Hence, we can formulate the following corollary of Theorems 1, 2, and 4.

Corollary 2. Assume that agents have valuation functions over the unit cube {0, 1}G
and that these valuation functions satisfy GSC. Further, assume that x̄ = 1G. Then, a
competitive equilibrium exists and the procedure outlined above describes the double-track
adjustment process presented in Sun and Yang (2009).

Thus, the results in this paper generalize Sun and Yang (2006) as well as Sun and
Yang (2009) in that they work for preferences over arbitrary positive and/or negative
quantities of every good, as well as for any initial endowment of the economy, if the
valuation functions satisfy the GGSC condition.
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Trading Networks

The trading networks economy introduced by Hatfield et al. (2013) also fits into our model.
We first describe the network economy and then show how the valuation functions in our
paper relate to the valuation functions as they are defined in Hatfield et al. (2013).

In the model, there is a set of agents N and a set of trades Ω which can be interpreted
as goods. The agents and trades form a graph, where the nodes are the agents and each
trade is a directed edge. If trade ω = (i, i′) ∈ Ω points from agent i to agent i′ then we say
that agent i is the seller and agent i′ is the buyer in this trade. Let Ωi be the trades that
are adjacent to agent i. Every agent i has a valuation function vi : {−1, 0, 1}Ωi → R over
subsets of adjacent trades. We model agent i being a buyer in trade ω ∈ Ωi by requiring
that for x ∈ {−1, 0, 1}Ωi , vi(x) = −∞ if xω = −1. Similarly, if agent i is a seller in trade
ω we require vi(x) = −∞ whenever xω = 1. The interpretation is that if agent i demands
vector x with xω = −1 then he wants to be engaged in trade ω where he is the seller and
similarly, if xω = 1 then he wants to be engaged in trade ω where he is the buyer.

We can embed this economy in our model by extending the valuation functions vi to
{−1, 0, 1}Ω as follows: Set vi(x) = −∞ if xω 6= 0 for some ω /∈ Ωi. Otherwise, if xω = 0
for all ω /∈ Ωi, just copy the valuation of the vector x restricted to Ωi. A competitive
equilibrium in the network economy is a competitive equilibrium for the endowment x̄ = 0.
Then we know that, whenever all valuation functions vi satisfy Assumption 1, there exists
a competitive equilibrium and a convergent price adjustment process.

We therefore get the following corollary regarding the model by Hatfield et al. (2013):

Corollary 3. In the model defined above, if the valuation function of every agent satisfies
Assumption 1, a competitive equilibrium exists. Further, Algorithm 1 can be used to find
competitive equilibrium prices for any initial price vector p. Section 6 provides an incentive
compatible dynamic auction for the model defined above.

In the following we explain how Assumption 1 is equivalent to the full substitutes
condition defined in Hatfield et al. (2013). In their paper, valuation functions, utility
functions, demand, and indirect utility are defined slightly differently as follows: Every
agent i has a valuation function ṽi : {0, 1}Ωi → R that can be embedded into {0, 1}Ω as
described above. Let Ωi→ be the trades adjacent to agent i in which he is a seller and
let Ω→i be the trades adjacent to him in which he is a buyer, respectively. Then the
interpretation is that if agent i demands bundle x and xω = 1 then agent i wants to be
engaged in trade ω. Given price vector p ∈ RΩ, an agent’s quasi-linear utility is defined
as

ũi(x, p) = ṽi(x) +
∑

ω∈Ωi→:xω=1

pω −
∑

ω∈Ω→i:xω=1

pω.

Indirect utility Ũi and demand correspondence D̃i are then defined as in Section 2, but
using ũi.

Hatfield et al. (2013) assume full substitutability which is defined as follows:15

Definition 8. A valuation function vi satisfies full substitutability (FS) if for every two
price vectors p ≤ p′ the following holds: For every x ∈ D̃i(p) there exists x′ ∈ D̃i(p

′) such
that whenever pω = p′ω for some ω, then xω ≤ x′ω if ω ∈ Ω→i and xω ≥ x′ω if ω ∈ Ωi→.

15This formulation is similar and equivalent to “indicator language full substitutability.”
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We now show that full substitutability and gross substitutability are equivalent. Fix
some agent i. We introduce the following transformation of a vector x ∈ {−1, 0, 1}Ω. As
in the last subsection, assume that the trades are ordered such that trades ω ∈ Ωi→ come
first. Then we apply the following matrix:

M =

(
−I|Ωi→| 0

0 I|Ω\Ωi→|

)
From the interpretation of the valuation functions vi and ṽi we see that for them to
represent the same preferences over trades, vi(Mx) = ṽi(x) has to hold for all x ∈ {0, 1}Ω.

Lemma 6. For transformed bundles we have Mx ∈ Di(p)⇔ x ∈ D̃i(p).

Proof. This follows from ∑
ω∈Ωi→:xω=1

pω −
∑

ω∈Ω→i:xω=1

pω = −〈p,Mx〉

and vi(Mx) = ṽi(x).

Proposition 7. A valuation ṽi satisfies FS if and only if the corresponding valuation
function vi satisfies Assumption 1.

Proof. On the unit-cube, Assumption 1 is equivalent to the ordinary (weak) gross sub-
stitutes condition. After applying the translation v′i(x) = vi(x − 1Ωi→), dom v′i is the
unit-cube. Since the gross substitutes condition is translation-invariant, it is therefore
enough to show that ṽi satisfies FS if and only if vi satisfies weak GS (Definition 2).

In order to prove necessity assume that ṽi satisfies FS. Take price vectors p ≤ p′ and
x ∈ Di(p). By Lemma 6 we know that Mx ∈ D̃i(p). Since ṽi satisfies FS, we know that
there exists Mx′ ∈ D̃i(p

′) such that whenever pω = p′ω for some ω, then Mxω ≤ Mx′ω if
ω ∈ Ω→i and Mxω ≥ Mx′ω if ω ∈ Ωi→. Hence, for ω with pω = p′ω we have xω ≤ x′ω.
Furthermore, x′ ∈ Di(p

′) and therefore x′ satisfies all requirements in Definition 2.
Sufficiency is proved similarly.

Combining the transformation M with the translation v′ in the proof above yields the
same transformation as that which is used in the proof for the existence of competitive
equilibria in Hatfield et al. (2013). However, the translation is not needed in our model
since our framework can deal with negative amounts of goods (that is, producers).

We can also use our framework to extend the model in this subsection to multiple
units of goods in each trade. Further, the transformation in the last subsection on the
gross substitutes and complements condition can be applied to the trading network model
to get two sets of trades Ω1 and Ω2 where trades in the same sets substitute each other
but trades in different sets are complements (see also Drexl 2013).

8 Discussion

In this paper we have used the theory of Discrete Convex Analysis to unify and generalize
the literature on tâtonnement for economies with indivisibilities. The interpretation of
the auction procedure proposed by Ausubel (2006) as a steepest descent algorithm of
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certain discrete convex functions yields simple and intuitive proofs of the convergence
properties of the generalized adjustment process. Applying the results demonstrates that
all the literature on discrete tâtonnement harnesses the notion of gross substitutability,
which is equivalent to M \-convexity. The theory of Discrete Convex Analysis confirms
that M \-convexity is essential for many properties of discrete convex functions.

Since the existence of market-clearing equilibria can be guaranteed for classes of valu-
ation functions that are much more general than the valuations we consider (see Baldwin
and Klemperer 2013), one of the big open questions is whether a price adjustment process
can be designed that converges for every instance of valuation functions where equilibria
are guaranteed to exist. While the indirect utility function in these cases is still convex,
it does not exhibit all the combinatorial properties used in the present paper. Still, it
might very well be possible to prove convergence of a suitably designed descent or gradient
algorithm that minimizes the aggregate indirect utility function.

Appendix: Discrete Convex Analysis

In this section we review the main definitions and results from Discrete Convex Analysis.
For a complete and self-contained treatment of the topic we refer the reader to Murota
(2003).

A convex function f with a convex domain in RG has several attractive properties.
First, local optimality implies global optimality. This yields many efficient optimization
methods for convex functions. Second, by the supporting hyperplane theorem, the subdif-
ferential of a convex function is non-empty everywhere, and the function can be recovered
from the set of subdifferentials. This implies conjugacy and duality results for the convex
conjugate (or Legendre-Fenchel transform) of f . The theory of Discrete Convex Analysis
identifies classes of convex functions defined on a subset of the discrete lattice ZG for
which discrete analogues of the above properties hold. These play an important role in
establishing the results in this paper.

The first important property of functions f : ZG → R, which will be shared by the two
subclasses of M \- and L\-convex functions, is integral convexity. It is defined in terms of
suitable convex extensions of f to a real-valued domain. Define the convex closure f̄ of f
as

f̄(x) = sup
p∈RG,α∈R

{〈p, x〉+ α | 〈p, x〉+ α ≤ f(y) ∀y ∈ ZG}.

This is equivalent to taking the convex hull of the epigraph of f . If the convex closure
coincides with f on the set of integer vectors, i.e., if f(x) = f̄(x) for all x ∈ ZG, f is
called convex-extensible, see Definition 3. We can relax the requirement in the above
definition to obtain a local version of the convex extension: The integral neighborhood
N(x) of x ∈ RG is defined as

N(x) = {y ∈ ZG : ||y − x||∞ < 1}. (A.4)

If we only impose the inequality 〈p, x〉+α ≤ f(y) for points y in the integral neighborhood
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function with local convex

extension.

x

f(x)

0 1 2 3 4

(b) A function that is not
integrally convex, together with
its local convex extension and

convex closure.

Figure 4: Local convex extension, convex closure and integral convexity.

of x, we get the local convex extension f̃ of f , which is defined as

f̃(x) = sup
p∈RG,α∈R

{〈p, x〉+ α | 〈p, x〉+ α ≤ f(y) ∀y ∈ N(x)}

= inf

 ∑
y∈N(x)

λyf(y)

∣∣∣∣∣∣
∑

y∈N(x)

λyy = x,
∑

y∈N(x)

λy = 1, λy ≥ 0

 . (A.5)

Here, equality of the two expressions follows from linear programming duality (see, e.g.,
Schrijver 1986).

Definition A.1. A function f : ZG → R is called integrally convex, if the local convex
extension f̃ is convex.16 Equivalently, f is integrally convex, if f̃ = f̄ .

The function f is called integrally concave, if the function −f is integrally convex.
A set S ⊆ ZG is an integrally convex set, if its indicator function δS is integrally

convex.

Integrally convex functions share with convex functions the important property that
local minima are also global minima.

Proposition A.1. Let f : ZG → R be an integrally convex function and x ∈ ZG. Then
f(x) ≤ f(y) for all y ∈ ZG if and only if f(x) ≤ f(y) for all y ∈ ZG with ||y − x||∞ ≤ 1.

Proof. We only need to show sufficiency. Consider the local convex extension f̃ of f .
From the definition of f̃ in (A.5) and the local optimality of x with respect to f it follows
that f̃(x) ≤ f̃(y) for all y with ||y − x||∞ ≤ 1. Hence, x is a local minimum of f̃ , which
is convex because of integral convexity of f . Therefore, x is also a global minimum of f̃
and in particular of f .

While integral convexity is sufficient for the global optimality of local minima, more
combinatorial structure is needed for the conjugacy and duality results we need. Discrete

16Note that integrally convex functions are convex-extensible, but the reverse is not necessarily true.
See Example 3.20 in Murota (2003).
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(a) An M \-concave function f .
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(b) An L\-convex function g.

Figure 5: An integrally concave and convex function. Note that the sets
arg maxx f(x)− 〈p, x〉 and arg minx g(p)− 〈p, x〉 are M \-convex and L\-convex sets,

respectively.

Convex Analysis identifies M \-convex and L\-convex functions as two important classes
of integrally convex functions which are in one-to-one correspondence to each other under
the Legendre-Fenchel transformation (defined below).

Definition A.2. A function f is M \-convex, if for x, y ∈ dom f and j ∈ supp+(x− y)

(i) f(x) + f(y) ≥ f(x− 1j) + f(y + 1j) or

(ii) f(x) + f(y) ≥ f(x− 1j + 1k) + f(y + 1j − 1k) for some k ∈ supp–(x− y).

A function f is M \-concave if the function −f is M \-convex.
A set X ⊆ ZG is an M \-convex set, if its indicator function δX is M \-convex.

The exchange property (ii) is closely related to the exchange axiom in matroid theory.
Therefore, the M stands for “matroid.”

Definition A.3. A function g is L\-convex, if for all p, q ∈ ZG and all α ∈ Z+,

g(p) + g(q) ≥ g([p− α1] ∨ q) + g(p ∧ [q + α1]).

A function g is L\-concave if the function −g is L\-convex.
A set P ⊆ ZG is an L\-convex set, if its indicator function δP is L\-convex.

L\-convex functions are precisely those submodular functions that are integrally con-
vex. The submodularity of an L\-convex function can be obtained by setting α = 0 in the
definition above. Since L\-convex sets are precisely the integral sublattices of ZG, the L
stands for “lattice.”

The classes of M \- and L\-convex functions and sets are in many ways dual to each
other. First, the Legendre-Fenchel transform of an M \-convex function is L\-convex and
vice versa. Second, the superdifferential of an M \-concave function is an L\-convex set,
while the subdifferential of an L\-convex function is an M \-convex set. The superdiffer-
ential ∂′f(x) of an integrally concave function f : ZG → R∪{∞} at x ∈ dom f is defined
as

∂′f(x) = {p ∈ ZG | f(y)− f(x) ≤ 〈p, y − x〉 ∀y ∈ ZG}.
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Theorem A.1. Let f be an M \-concave function. Then

(i) for all x ∈ dom f , the superdifferential ∂′f(x) is a non-empty L\-convex set.

(ii) for all p ∈ ZG, the set of maximizers arg maxx{f(x) − 〈p, x〉} is an M \-convex set
if it is not empty.

An analogue version of the above theorem holds for an M \-convex function and its
subdifferential. The set of maximizers in part (ii) of the theorem are depicted in Figure 5a
on the x1, x2-plane. It turns out that M \-concave functions are characterized by either of
the properties in Theorem A.1.

Define the subdifferential ∂g(x) of an integrally convex function g : ZG → R∪{∞} at
x ∈ dom g as

∂g(p) = {x ∈ ZG | g(q)− g(p) ≥ 〈x, q − p〉 ∀q ∈ ZG}.

Theorem A.2. Let g be an L\-convex function. Then

(i) for all p ∈ dom g, the subdifferential ∂g(p) is a non-empty M \-convex set.

(ii) for all x ∈ ZG, the set of minimizers arg minp{g(p)− 〈p, x〉} is an L\-convex set if
it is not empty.

An analogue version of this theorem holds for an L\-concave function and its super-
differential. The set of L\-convex functions is characterized by either of the properties in
Theorem A.2.

The concave conjugate or Legendre-Fenchel transform of a function f is defined as

f ◦(p) = inf
x
{〈p, x〉 − f(x)}.

The following conjugacy result holds for an M \-concave function (an analogue result
holds for L\-convex functions).

Theorem A.3 (Conjugacy). Let f be an M \-concave function. Then

(i) the concave conjugate f ◦ is L\-concave and

(ii) the biconjugate of f is identical to f itself: f ◦◦ = f .

A special property of M \-concavity is that it is preserved under the following operation
(Murota 2003). Define the convolution f1 � f2 of two M \-concave functions f1 and f2

through
(f1 � f2)(x) = max

x1,x2

{
f1(x1) + f2(x2) | x1 + x2 = x

}
. (A.6)

We can see from the definition that the effective domain of f1 � f2 will be the Minkowski
sum dom f1 + dom f2 = {x = x1 + x2 ∈ RG | x1 ∈ dom f1 and x2 ∈ dom f2}. Since the
convolution is associative, we can for a collection of functions {fi}i∈N , define fN = �i∈N fi.
It follows that fN will be M \-concave given that fi is M \-concave for all i ∈ N .

The Legendre-Fenchel transformation and the convolution operator satisfy the relation

(f1 � f2)◦ = f ◦1 + f ◦2 . (A.7)
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