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Abstract

This paper studies the role of hard information in contractual and market settings

in which the receiver can flexibly adjust allocations and transfers in response to the

sender’s disclosure. These settings include monopoly pricing, bilateral trade with inter-

dependent values, insurance contracting, and policy negotiations. Across these settings,

the sender is worst off if she reveals her type completely: if her type becomes known,

the receiver can adjust the terms of trade to extract her surplus. Taking this feature as

our central departure from the literature, we characterize the entire set of equilibrium

payoffs across these disclosure games. We establish an equivalence result: every payoff

profile that can be achieved through information design can also be approximated by

an equilibrium of the disclosure game. Thus, hard information enables the sender to

attain her commitment payoff without having to commit to an information structure.

Moreover, this result highlights how verifiability can empower the sender in settings in

which bargaining power resides with the receiver.
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1 Introduction

In many strategic interactions, one player can disclose hard information to influence others’

actions. For example, the seller of an asset may reveal audited statements about an asset’s

value to attract higher price offers, or an insuree may share medical records to obtain better

terms. An important literature initiated by Grossman (1981) and Milgrom (1981) models such

settings as disclosure or persuasion games. These games feature two core ingredients. First,

the informed party—or the sender—possesses hard information that cannot be manipulated:

she can share nothing but the truth although she need not share the entire truth. Second,

she cannot precommit to what she discloses; of the utterances that she can make, she chooses

the one that results in the most favorable outcome. The party hearing these utterances—the

receiver—is no fool. He draws inferences from both what is said and what is left unsaid. Thus,

what the sender says and how the receiver responds are jointly determined in equilibrium.

The classical analysis of these settings shows that combining these ingredients leads to un-

raveling: the sender voluntarily discloses all information in the unique equilibrium. The logic

for why a fully revealing equilibrium exists is that were the sender to withhold information,

the receiver assumes the worst and responds in a way that makes concealment unprofitable.

A more powerful force pushes every equilibrium to be fully revealing: in the settings modeled

by this prior literature, for any pool of sender types, at least one type strictly prefers to reveal

itself than remain pooled. The ability to disclose hard information thus creates a commitment

trap: even if the sender would prefer ex ante to conceal some information, strategic forces

compel her to disclose everything.

While in some applications, the sender may prefer to reveal her type, this assumption

fails in many economically important settings. Consider a buyer-seller interaction in which

the buyer can disclose information about her value before the seller makes a take-it-or-leave-

it (TIOLI) offer. The buyer gains nothing from revealing her true value because doing so

enables the seller to extract her entire surplus. Similarly, in a monopolistic insurance market,

an insuree may disclose some information to alleviate adverse selection but disclosing it all

results in a contract that drives her utility down to her outside option.

More generally, in contractual and market settings where the receiver can flexibly adjust

the terms of trade based on what is disclosed and then issue a TIOLI offer, full disclosure

leaves the sender no better off than her outside option. In such settings, she may prefer to

withhold information to counteract the receiver’s bargaining power but she cannot commit to

it. Prior work has not generally understood the equilibrium implications of hard information

in these contractual settings. Our goal is to provide a unified analysis. Does unraveling fail

and, if so, what is the resulting set of equilibrium payoffs?

We consider a broad class of sender-receiver games in which the sender discloses evidence
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about her type to a receiver. Following Grossman (1981) and Milgrom (1981), the sender can

disclose any subset of types that contains her true type. Upon receiving this disclosure, the

receiver chooses an action. Our framework is agnostic about the nature of this action: it may

be a price offer from a seller, a menu of insurance contracts from an insurer, or an allocation

and transfer proposed by a principal.

We make three assumptions. Our first assumption is that the sender weakly favors un-

certainty: relative to her payoff from inducing any belief, she never strictly gains from fully

revealing her type. This assumption is our primary departure from the existing literature,

capturing the settings described above in which full disclosure results in the receiver extracting

full surplus. The other two assumptions are standard. The second states that every message

contains a “worst-case type” who no type capable of sending that message would like to imi-

tate. The third assumption imposes a form of continuity on the receiver’s payoff with respect

to his actions and beliefs. These three assumptions are satisfied in many familiar settings,

including monopoly pricing, asset sales, insurance contracting, and policy negotiations.

Under our assumptions, unraveling fails: while full disclosure remains an equilibrium, there

also exists an equilibrium in which the sender completely conceals her type. This multiplicity

raises a central question: what is the range of equilibrium payoffs? In general, characterizing

the entire equilibrium payoff set is difficult once unraveling fails; most existing approaches are

therefore constructive and problem-specific. Nevertheless, our main result obtains this set,

using information design as a tool.

To that end, suppose the sender could commit to an information structure that reveals

information to the receiver before the receiver chooses his action. A payoff profile (u∗
S, u

∗
R) is

achievable if there exists an information structure that induces these payoffs. Every equilib-

rium payoff of the disclosure game is achievable because any sender strategy can be replicated

by an information structure. Our main finding, Theorem 1, establishes the converse.

Main Result. Every achievable payoff profile can be (approximately) supported

by an equilibrium of the disclosure game.

This result shows that, under our assumptions, there is virtually no gap between information

design and voluntary disclosure: for every achievable payoff profile (u∗
S, u

∗
R) and every ε > 0,

some equilibrium of the disclosure game attains payoffs within ε of (u∗
S, u

∗
R). Hence, equilib-

rium outcomes encompass not only full and no revelation but also the entire range of partially

revealing outcomes. In particular, the sender could obtain payoffs arbitrarily close to that

delivered by her optimal information structure, withholding information to counter the re-

ceiver’s bargaining power. Thus, she can not only escape the commitment trap of unraveling

but also attain her commitment payoff.
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Methodologically, the result shows that in a broad class of economically important set-

tings, one can characterize equilibrium payoffs by focusing solely on the receiver’s obedience

constraints—exactly as in information design—while disregarding the sender’s incentive con-

straints altogether. Finally, we show that each of the three assumptions is essential: relaxing

any of them allows one to find settings in which the conclusion of our main result fails.

Our analysis also has implications for cheap-talk communication in these contractual

settings. Theorem 1 implies that allowing for cheap talk—either alone or alongside hard

information—does not enlarge the set of equilibrium payoffs relative to the disclosure game.

In fact, in the applications discussed below, cheap talk by itself is completely ineffectual.

We apply our result to market and contractual settings in which the receiver can adjust

the terms of trade following disclosure; we also obtain additional results in these settings. We

discuss these applications below.

Monopoly Pricing: We begin with the canonical monopoly pricing problem with unit

demand. We show that our assumptions hold in this setting, leveraging a result by Yang

(2023). Therefore, every payoff in the “BBM triangle” (Bergemann, Brooks, and Morris,

2015) can be virtually supported by an equilibrium of the disclosure game. We view this

result as useful from several perspectives.

First, it responds to a challenge raised by Bergemann and Morris (2019), who caution

against interpreting information design in markets literally because it “would need to iden-

tify an information designer who knew consumers’ valuations and committed to give partial

information to the monopolist in order to maximize the sum of consumers’ welfare.” Our

finding shows that voluntary disclosure can serve as a microfoundation for this benchmark:

information flows directly from the buyer to the seller in a standard disclosure game, without

requiring a third party who observes the buyer’s type or commits to an information structure.1

Second, the result highlights how an intermediary or data collective that verifies statements

about consumers’ values could enable consumers to attain payoffs close to their optimal infor-

mation structure. In such equilibria, consumers disclose enough information to influence the

monopolist to offer targeted discounts—grouping together high and low value buyers—but

not so much information that the monopolist extracts their full surplus. This behavior resem-

bles group-pricing schemes seen in practice, where senior citizens, students, and low-income

households can disclose evidence to obtain price discounts. A key requirement to achieve the

commitment benchmark is that the evidence be sufficiently rich, capable of pooling low and

high values while excluding medium ones. In this regard, we prove that consumer payoffs

1Fainmesser, Galeotti, and Momot (2024) and Galperti, Liu, and Perego (2024) develop important alter-
native microfoundations: the former studies a platform that uses past purchases to infer consumer valuations,
and the latter models an intermediary who purchases consumer data and intermediates trade.
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are generally bounded away from the commitment benchmark if consumers could send only

“interval messages.” Our analysis therefore speaks to the gains that consumers accrue when

they control, at a granular level, what data firms observe about them.

While we focus on monopoly pricing, a similar logic extends to competitive markets with

differentiated products. Elliott, Galeotti, Koh, and Li (2024) characterize the information

structure that maximizes consumer surplus. We argue that equilibria of a multi-firm disclosure

game can approach those payoffs. In these equilibria, consumers disclose selectively to firms,

revealing their location to non-preferred firms so as to intensify competition, and partially

disclosing information to the preferred firm to counteract its bargaining power.

Finally, we find that the truth-leaning refinement of Hart, Kremer, and Perry (2017) selects

payoffs on the efficiency frontier, and virtually every efficient payoff can be supported by a

truth-leaning equilibrium.

Disclosures about Assets: We study an asset market in which a seller strategically dis-

closes evidence to mitigate adverse selection. Absent disclosure, prospective buyers fear pur-

chasing a lemon, leading to inefficient trade. We find that, when facing a single buyer, the

seller-optimal equilibrium entails partial disclosure: the seller reveals just enough to alleviate

adverse selection while withholding information to retain all efficiency gains. In contrast, if

there are two or more buyers, all equilibria feature full disclosure. These results offer a new

perspective on how market competition promotes transparency.2

We use these findings to identify when the seller benefits most from attracting a second

buyer. When adverse selection is severe, the seller gains less from a second buyer: partial

disclosure then is a powerful tool that both alleviates adverse selection and counteracts the

buyer’s market power. When adverse selection is mild, however, competition dominates dis-

closure as a tool for limiting market power. Our analysis thus yields a joint prediction that

links the severity of adverse selection to competition and transparency in the asset market.

Insurance Contracting: Should insurers be allowed to condition contracts on an insuree’s

disclosure of genetic information? Doing so improves efficiency by reducing the informational

asymmetry between the parties. Regulators, however, worry that allowing disclosure could

compel insurees to reveal all information, leaving them worse off. Reflecting this concern, the

Genetic Information Nondiscrimination Act of 2008 prohibits US insurers from using genetic

information provided by prospective insurees (Erwin, 2008; Golinghorst et al., 2022). Against

this backdrop, we evaluate how disclosure could shape the insurance market. We consider the

standard insurance contract model and show that it satisfies our three assumptions. Thus,

2The literature on competition and disclosure initiated by Milgrom and Roberts (1986) focuses on how
multiple informed senders vie to influence a single uninformed receiver. By contrast, we study how multiple
uninformed receivers affect the disclosure incentives of a single sender.
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disclosure could enable the insuree to attain payoffs arbitrarily close to those generated by

her (ex ante) optimal information structure. Yet, consistent with regulators’ concerns, some

equilibria can leave her strictly worse off than prohibiting disclosure. These findings highlight

the potential role of government agencies or third-party intermediaries in steering markets

towards equilibria that benefit both insurers and insurees.

Veto Bargaining: In the Supplementary Appendix, we consider Romer and Rosenthal

(1978)’s model of policy negotiations, a workhorse in political economy. We show that our

assumptions and main finding hold in this setting despite the absence of transferable utility.

Outline of Paper: Section 2 describes the disclosure game and Section 3 the main results.

Section 4 considers applications. Section 5 concludes. Omitted proofs and material are in

appendices. The rest of this introduction discusses the related literature.

Related Literature: We build on canonical disclosure models in which the sender discloses

any set of types that contain her true type (Grossman and Hart, 1980; Grossman, 1981;

Milgrom, 1981; Milgrom and Roberts, 1986). In much of this work, the sender’s payoff depends

only on the receiver’s posterior mean, motivated either through a market price or quantity

choice. Such payoff structures limit the receiver in how he can vary contractual terms in

response to the sender’s disclosure. Our main departure is that we endow the receiver with

the flexibility to choose prices and allocations, as in monopoly pricing or insurance contracting.

This flexibility ensures that if the sender fully discloses her type, the receiver follows up with

an action that extracts her surplus. This feature is why unraveling fails in our model.

A large literature explores other obstacles to unraveling, including Dye-evidence structures

and costly disclosure; see Ben-Porath, Dekel, and Lipman (2025) for a survey. The strand

closer to our work studies settings that violate the payoff monotonicity conditions underlying

the classical unraveling logic. Okuno-Fujiwara, Postlewaite, and Suzumura (1990), Seidmann

and Winter (1997), and Mathis (2008) provide sufficient conditions for unraveling and they

as well as Giovannoni and Seidmann (2007) and Martini (2018) highlight how unraveling fails

when those conditions are not met.3 In a setting with state-independent preferences, Titova

and Zhang (2025) show that payoff monotonicity breaks when the receiver chooses from

finitely many actions, and they identify conditions under which the sender-optimal achievable

payoff can be supported by an equilibrium. Their analysis restricts the receiver’s action space

whereas, by contrast, we endow the receiver with greater flexibility.

Our work evaluates a form of non-monotonicity distinct from those above. Herein, the

sender does not profit from revealing her type because the receiver can flexibly adjust the

market price or contractual terms of trade based on her disclosure. On this theme, a few

3Also related is Onuchic and Ramos (2025)’s result on how unraveling fails under group disclosure.
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recent papers (Glode, Opp, and Zhang, 2018; Pram, 2021; Ali, Lewis, and Vasserman, 2023)

model how disclosure can be beneficial in markets. A second feature that distinguishes our

analysis from prior work is that we characterize the entire set of equilibrium payoffs, using

information design as a tool. Because the prior literature primarily relies on constructive

approaches, a complete characterizations is typically infeasible when unraveling fails.

In our analysis, we restrict ourselves to the evidence structure adopted by Grossman

(1981) and Milgrom (1981), where the sender may disclose any set of types containing her

true type. Our reasons are twofold. First, it isolates the role of the payoff environment in

generating our novel conclusions. Second, while richer evidence structures—such as stochastic

evidence—could in principle enlarge the set of equilibrium payoffs, our main result implies

that no evidence structure yields a larger payoff set in the settings that we study.

We take the standard Grossman-Milgrom evidence structure as a primitive. In other

contexts, prior work models how a sender or intermediary would design evidence.4 Kamenica

and Gentzkow (2011, pp. 2598-2599) show that voluntary disclosure can support the sender-

optimal information structure in a game in which an uninformed sender publicly chooses a

Blackwell experiment, privately observes its realization s, and then can send any message m

that contains s. More recently, Arieli and Stewart (2025) and Dai, Fudenberg, and Pei (2025)

study the scope and limits of selective disclosure of designed evidence.

Our work identifies settings in which the sender does not benefit from committing to an

information structure. A different literature studies mechanism design with evidence (e.g.,

Glazer and Rubinstein, 2004; Hart, Kremer, and Perry, 2017; Ben-Porath, Dekel, and Lipman,

2019) and identifies settings in which the receiver does not value committing to a mechanism.

2 Model

We study a disclosure game in which a sender (she) shares evidence with a receiver (he) who

then chooses an action. The sender privately observes her type θ drawn from the compact set

Θ ⊆ Rn according to the probability measure F that admits a strictly positive density f with

respect to the Lebesgue measure on Rn. Her type determines what she can say: the sender

of type θ chooses a message in M(θ) := {m ∈ C : θ ∈ m}, where C denotes the collection of

all non-empty closed subsets of Θ. Like Grossman (1981) and Milgrom (1981), we interpret

each message as evidence in that any statement the sender makes, such as “my type is in m,”

must be true.5 Observe that M(θ) includes the fully revealing message {θ} (available only to

4E.g., see DeMarzo, Kremer, and Skrzypacz (2019), Ali, Haghpanah, Lin, and Siegel (2022), Dasgupta,
Krasikov, and Lamba (2022), Pollrich and Strausz (2024), Shishkin (2025), and Celik and Strausz (2025).

5Equivalently, we could have formulated evidence in the space of “documents,” as in Lipman and Seppi
(1995), Bull and Watson (2004), Hart, Kremer, and Perry (2017), and Ben-Porath, Dekel, and Lipman (2019).
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type θ), the fully concealing message Θ (available to every type), and a spectrum of messages

that reveal some but not all information about the sender’s type.

After receiving the sender’s message, the receiver chooses an action a from a compact

metrizable space A. The sender’s payoff uS(a, θ) is continuous in a for each θ, while the

receiver’s payoff uR(a, θ) is upper semicontinuous in a for each θ.

We now define strategies and equilibria for this game. The sender’s strategy is a function

ρ : Θ → ∆(C) in which the support of ρ(θ) is a subset of M(θ) for every type θ. The

receiver’s strategy is a function τ : C → A.6 The receiver’s beliefs about the sender’s type

are represented by the belief system µ : C → ∆(Θ). An assessment ((ρ, τ), µ) is a Perfect

Bayesian Equilibrium (henceforth, equilibrium) if the following conditions hold:

(a) Given her type, the sender discloses evidence optimally : for every type θ, ρ(θ) is sup-

ported on argmaxm∈M(θ) uS(τ(m), θ),

(b) Given the message, the receiver chooses actions optimally : for every message m, τ(m) ∈
argmaxa∈A

∫
Θ
uR(a, θ) dµ(θ|m),

(c) Beliefs respect evidence: for every message m, the receiver’s beliefs µ(m) have a support

that is a subset of m.

(d) Bayes’ Rule: the beliefs µ are obtained from F given ρ using Bayes’ rule, i.e., µ is a

regular conditional probability system.

This framework accommodates numerous applications. Our primary objective is to cap-

ture market and contractual environments in which the receiver flexibly adjusts the terms

of trade—allocations and transfers—based on information that is disclosed. We present two

applications below, first considering the leading example of monopoly pricing and then a more

general principal-agent setup.

Example 1 (Monopoly Pricing). Consider the standard monopoly pricing problem with in-

complete information, augmented with a disclosure stage: the buyer of a good can disclose

evidence about her value θ to a monopolist who then responds with a price offer that the

buyer can accept or reject. Here, the buyer’s type θ is drawn from Θ = [θ, θ] and action

a ∈ R represents a price. We write uS(a, θ) = max{θ − a, 0} for the buyer’s payoff and

uR(a, θ) = a1a≤θ for the monopolist’s payoff, reflecting that if the buyer accepts the price a,

trade happens at that price, and if she rejects, each party obtains 0. ■

Example 2 (Principal-Agent Model). Consider a standard principal-agent setting in which the

agent (sender) has a type θ drawn from Θ = [θ, θ]. The principal (receiver) offers a menu

of pairs (x, t), where x ∈ X is an allocation from a compact space and t ∈ R is a transfer

6We endow C with the Hausdorff metric. Throughout our analysis, for a compact metrizable space X,
∆(X) denotes the set of (Borel) probability measures on X endowed with the weak∗ topology. Our analysis
allows for mixed actions; then, we interpret A as the set of probability distributions over (pure) actions.
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from the agent to the principal. The agent selects her preferred option from this menu or an

outside option, x0 ∈ X. The agent’s payoff from (x, t) is vS(x, θ)− t and the principal’s payoff

is vR(x, θ) + t. We assume that vS(·, θ) and vR(·, θ) are continuous for each θ.

Our setup captures this interaction by specifying that the principal’s action a is a compact

subset ofX×R that includes the outside option, (x0, 0). The agent selects her preferred option

from a, breaking ties in the principal’s favor. Letting (xa, ta) denote type θ’s optimal choice in

a, the resulting payoffs are uS(a, θ) = max(x,t)∈a{vS(x, θ)−t} and uR(a, θ) = vR(xa, θ)+ta. ■

3 When Disclosure Attains Design

3.1 The Information Design Benchmark

We use the payoffs that stem from information design as a benchmark. In this benchmark, the

receiver observes the realization of a Blackwell experiment and then chooses an action. We call

a distribution over types G ∈ ∆(Θ) a belief. A segmentation is a distribution σ ∈ ∆(∆ (Θ))

over beliefs that average to the prior F—that is,
∫
G dσ(G) = F—and a belief in the support

of a segmentation is a segment. A segmentation achieves a payoff profile (u∗
S, u

∗
R) if player i’s

ex ante expected payoff from the segmentation, given that the receiver best responds, is u∗
i ; a

payoff profile is achievable if some segmentation achieves it. For instance, in monopoly pricing

(Example 1), the set of achievable payoffs is the “BBM-triangle” characterized by Bergemann,

Brooks, and Morris (2015), namely all feasible payoff profiles in which the monopolist does

as well as she would from setting a uniform price.

Every equilibrium payoff profile of the disclosure game is achievable because every sender

strategy induces a segmentation. Our main result pertains to the converse, namely conditions

under which every achievable payoff can be approximated by an equilibrium of the disclosure

game. We turn to these conditions next.

3.2 The Key Assumptions

We impose three assumptions. The first is that the sender does not benefit from fully disclosing

her type; this assumption is our primary departure from the literature and captures settings

in which the receiver extracts the sender’s surplus if she fully reveals her type. The second

assumption, standard in the literature, requires that every message contains a type that no

other type prefers to imitate and can thus serve as the root for skeptical beliefs. The third

assumption imposes a form of continuity on the receiver’s utility function.

To formalize these assumptions, let a∗(G) := argmaxa∈A
∫
uR(a, θ)dG(θ) be the receiver’s

optimal actions given belief G. Let a(θ) denote a receiver-optimal action if the sender’s type
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is known to be θ, where the receiver breaks ties among his optimal actions so as to induce

the lowest payoff for the type-θ sender.7 These definitions lead to our first assumption.

Assumption 1. The sender never strictly benefits from fully revealing her type relative to

any other belief about her type. Formally, for every type θ, belief G such that the support of

G contains θ, and receiver-optimal action a ∈ a∗(G), uS(a, θ) ≥ uS(a(θ), θ).

Assumption 1 is our primary departure from the literature. A common assumption in

prior work (e.g., Grossman, 1981; Milgrom, 1981) is that the sender’s indirect utility over the

receiver’s beliefs is monotone: every type strictly prefers to induce “higher” beliefs in some

order. This payoff monotonicity condition implies that in any pool of sender types, at least

one type would prefer to separate and reveal itself. While natural in some environments,

this condition rules out important contractual and market settings in which the receiver can

flexibly adjust his action and transfers after observing the disclosure. In such settings, the

sender cannot gain from full revelation as doing so would enable the receiver to make a TIOLI

offer that fully extracts her surplus. In these settings, Assumption 1 holds instead.

We illustrate this principle first in monopoly pricing (Example 1): if the buyer reveals her

type θ, the monopolist would charge a price equal to θ that leaves her with no surplus. No

other belief could make her worse off.

More generally, consider the standard principal-agent setting described in Example 2.

Under complete information, the principal offers a menu with two elements: the outside

option with zero transfer and the efficient allocation paired with a transfer that extracts the

sender’s surplus. That is, the principal’s action a is the menu {(x0, 0), (x
∗
θ, t

∗
θ)} where x0 is the

outside option, x∗
θ is an efficient allocation, maximizing vS(x, θ) + vR(x, θ), and the transfer

t∗θ := vS(x
∗
θ, θ) − vS(x0, θ) leaves the sender just indifferent between accepting and rejecting.

As in monopoly pricing, complete information leads to a contract that yields a lower payoff

than what the sender would obtain were she to induce any other belief.

We turn to our second assumption.

Assumption 2. Every message m contains a worst-case type θ̂m such that for every θ ∈ m,

uS(a(θ), θ) ≥ uS(a(θ̂m), θ). In other words, no type in m would prefer to imitate θ̂m.

This assumption, standard in the literature, allows the modeler to deter off-path messages

by endowing the receiver with “skeptical beliefs” that concentrate on a single type following

an off-path message. It holds in settings that satisfy the payoff monotonicity condition (e.g.,

Grossman, 1981; Milgrom, 1981): when every sender type prefers the receiver to hold higher

beliefs, the worst-case type for a message is simply the lowest type capable of sending it. More

7In other words, a(θ) ∈ arg mina∈a∗(δθ)
uS(a, θ), where δθ is the Dirac measure on θ.
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generally, Seidmann and Winter (1997) and Hagenbach, Koessler, and Perez-Richet (2014)

show that a worst-case type exists if preferences satisfy a standard single-crossing condition.

A similar logic applies in our leading applications, even though those applications violate

the payoff monotonicity condition. For monopoly pricing, the worst-case type for a message

m is the highest type that could send it, θ̂m := maxθ∈m θ. No other type that could send

message m would wish to mimic θ̂m because doing so induces the monopolist to charge a price

equal to θ̂m, yielding the buyer a payoff of 0.

More generally, in the principal-agent setting of Example 2, Assumption 2 holds whenever

the agent’s willingness to pay (WTP) for any alternative x, namely vS(x, θ)−vS(x0, θ), weakly

increases in θ. This increasing-WTP assumption holds in standard contracting environments:

if X is partially ordered with x0 as the lowest alternative, the WTP is increasing if vS(x, θ)

satisfies increasing differences in (x, θ). In this setting, θ̂m := maxθ∈m θ serves as a worst-case

type for message m. To see why, observe that given a point mass belief on θ̂m, the principal

optimally offers a menu of two items: the outside option and an efficient alternative for type

θ̂m paired with the transfer that extracts full surplus from that type. Because type θ̂m has

a higher WTP for this alternative than all lower types, every other type that could send

message m obtains zero surplus from this menu.

The discussion above emphasizes how Assumptions 1 and 2 are satisfied when the receiver

makes a TIOLI offer. The example below shows that these assumptions are also compatible

with the sender having some bargaining power.

Example 3 (Monopoly Pricing Revisited). Consider an adaptation of Example 1 in which

following disclosure, a random recognition rule determines who makes the offer: the seller

makes the offer with probability α ∈ (0, 1) and the buyer makes the offer with probability (1−
α). As the buyer’s disclosure affects equilibrium payoffs only when the seller makes the offer,

Assumption 1 still holds. Similarly, Assumption 2 still holds, setting θ̂m := maxθ∈m θ. ■

Our final assumption imposes a form of continuity. To motivate this assumption, we

observe that all of our applications, including monopoly pricing, are inherently discontinuous

games in that uR(a, θ) is discontinuous in a for each θ. Nevertheless, these games satisfy a form

of continuity weaker than the standard notion. The condition below distills that underlying

property. Let UR(G) := maxa∈A
∫
uR(a, θ) dG(θ) be the receiver’s expected payoff when he

chooses his optimal action for a beliefG. Of his best responses to beliefG, let a(G) and a(G) be

ones that minimize and maximize the sender’s payoff: a(G) ∈ argmina∈a∗(G)

∫
uS(a, θ) dG(θ)

and a(G) ∈ argmaxa∈a∗(G)

∫
uS(a, θ) dG(θ).
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Assumption 3. The following hold:

(a) The receiver’s payoff from choosing an optimal action, UR(G), is continuous and the set

of optimal actions, a∗(G), is upper hemicontinuous.

(b) For every belief G and strictly positive ε and δ, there are

• a belief H such that the Radon-Nikodym derivative dH
dG

≤ 1 + ε, and any best

response to H is in Bδ(a(G)); and

• a belief H such that the Radon-Nikodym derivative dH
dG

≤ 1 + ε, and any best

response to H is in Bδ(a(G)).

Moreover, the functions that send G to H and H, respectively, are measurable.

To elaborate on (a), let uR(a,G) :=
∫
uR(a, θ) dG(θ) be the receiver’s expected payoff when

his belief is G. Were uR(a,G) continuous in (a,G), part (a) follows from Berge’s maximum

theorem. As noted above, uR(a,G) is not continuous in (a,G) in any of our applications.

Nevertheless, we show that (a) holds in these applications by applying maximum theorems

that require weaker conditions than Berge’s theorem.

Part (b) specifies a form of “selection continuity” for the receiver’s best responses: for

every belief G, there exists a “nearby” belief H such that every best response to H lies close

to the best response to G that minimizes the sender’s payoff. Symmetrically, there exists a

nearby belief H such that every best response lies close to the best response to belief G that

maximizes the sender’s payoff. A sufficient condition is that any “target” best response a to

belief G can be “uniquely selected” by perturbing the belief G to a “nearby” H such that all

best responses to H are close to the target action a. This property holds if A is convex and

the receiver’s utility function is strictly concave in a for every belief G.

We show that Assumption 3(b) holds in our applications pertaining to monopoly pricing,

asset markets, and policy negotiations using the fact that the receiver’s action space is one-

dimensional. An ancillary implication of part (b) is that the receiver has a unique optimal

action in the complete information game, which fails in our insurance application. To accom-

modate that application, we develop in Remark 1 a weaker form of continuity that does not

require a unique optimal action and instead operates in the space of payoffs. The underlying

economic idea is that the sender’s risk aversion makes the receiver’s payoff function “almost”

strictly concave, which enables us to verify that this weaker notion holds.

3.3 Main Result

Given our assumptions, unraveling fails in this disclosure game: alongside a fully revealing

equilibrium, there also exists a fully concealing equilibrium. In this equilibrium, the sender
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sends the message Θ regardless of her type and the receiver takes his (ex ante) optimal action

on the equilibrium path. Following any off-path message, he assigns probability 1 to a worst-

case type for that message. Given Assumptions 1 and 2, the sender finds neither full revelation

nor a partially revealing off-path message profitable.

Our main interest lies in characterizing the entire equilibrium set, not merely the extremes

of full revelation and full concealment. Typically, an exhaustive characterization is infeasible

once unraveling fails. In our setting, the full equilibrium payoff set can be identified through

information design.

Theorem 1. Suppose Assumptions 1, 2, and 3 are satisfied. For every achievable payoff

profile (u∗
S, u

∗
R) and every ε > 0, there is an equilibrium of the disclosure game whose payoffs

are within ε of (u∗
S, u

∗
R).

Theorem 1 shows that a rich set of equilibrium outcomes prevails in our setup. Importantly,

the sender can obtain payoffs arbitrarily close to those delivered by her optimal information

structure without having to commit to a Blackwell experiment. Voluntary disclosure thus

enables the sender to obtain her commitment payoff rather than creating the commitment trap

emphasized by Grossman (1981) and Milgrom (1981) where she is forced to reveal everything.

To explain why we reach a different conclusion, we return to how the receiver herein can

flexibly adjust the terms of trade following disclosure. Because the receiver can issue a TIOLI

offer, the sender has no incentive to fully reveal her type. To the contrary, she has a strong

interest in keeping the receiver in the dark so as to counteract his bargaining power. This force

is not captured by existing models that either restrict the receiver to more limited instruments,

such as a quantity choice with fixed prices (Milgrom, 1981), or take bargaining power away

from the receiver altogether (Grossman, 1981). Once the receiver has the ability to flexibly

adjust the terms of trade, the sender strategically withholds information to counteract the

receiver’s bargaining advantage in the sender-optimal equilibrium.

We highlight two ancillary implications of Theorem 1. First, endowing the sender to also

communicate by cheap talk—either alone or alongside hard information—does not enlarge

the equilibrium set. In fact, in all applications that we consider, cheap talk alone effectively

results in the babbling equilibrium and the receiver choosing his ex ante optimal action.

Second, methodologically, Theorem 1 identifies a broad class of environments in which the

equilibrium payoffs of a disclosure game can be obtained non-constructively solely through

the receiver’s obedience constraints, ignoring the sender’s incentive constraints altogether.

One may wonder if the equilibria that we study rely on unreasonable off-path beliefs. In

the Supplementary Appendix, Theorem 3 shows that all equilibria we consider satisfy the

natural analogue of the intuitive criterion (Cho and Kreps, 1987). Therein, we also study

a second form of robustness, namely to the sender lacking evidence with small probability.
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This perturbation, in the spirit of Dye (1985), motivates a large strand of the disclosure liter-

ature. We analyze its implications in the principal-agent setting of Example 2 and show that

under an additional assumption—satisfied in monopoly pricing, asset markets, and insurance

contracting—the equilibrium payoff set is robust to this perturbation. Thus, the possibil-

ity that the sender lacks evidence does not refine equilibrium outcomes in these contractual

settings. More specific to monopoly pricing, we show in Section 4.1 that the truth-leaning

refinement introduced by Hart, Kremer, and Perry (2017) has bite, but only by ruling out

inefficient payoff profiles.

Section 3.4 sketches the proof of Theorem 1. The key obstacle is that in information

design, a sender can commit to mixing across messages even if the resulting payoffs differ; by

contrast, in an equilibrium of the disclosure game, the sender mixes only if she is indifferent.

Our first step shows that if a segmentation is “partitional”—in that only a measure-0 set of

types belongs to more than one segment—then it can be supported in an equilibrium of the

disclosure game. Our second step evaluates the cost of restricting attention to partitional

segmentations: we show that for every achievable payoff profile, there exists a nearby payoff

profile that is achieved by a finite partitional segmentation.8 In the Supplementary Appendix,

we show that our assumptions are necessary for Theorem 1 in that the conclusion fails if any

assumption is dropped while maintaining the other two assumptions.

3.4 Proof Sketch

The sender’s equilibrium messaging strategy induces a segmentation: each messagem defines a

segment corresponding to the receiver’s belief following that message. Say that a segmentation

σ is finite if its support is a finite set. A segmentation σ is partitional if for every G,H ∈
supp (σ) with G ̸= H, supp(G) ∩ supp(H) has F -measure zero.

Lemma 1. If Assumptions 1 and 2 are satisfied, then every payoff profile achieved by a finite

partitional segmentation can be supported as an equilibrium.

Proof sketch. Fix a finite partitional segmentation σ and a best response a : suppσ → A for

the receiver. In the equilibrium we construct, the set of on-path messages is {suppG}G∈suppσ.

For any on-path message suppG, the receiver updates her belief to G and plays a(G). For any

off-path message m, the receiver updates to a point mass belief on the “worst case type” θ̂m,

which exists by Assumption 2, and then plays a(θ̂m). For any type contained in the support of

only one segment in suppσ, there is only one on-path message available to her and the sender

sends this message. For any type θ in the support of two or more segments in σ, the sender

chooses the on-path message available to θ that results in the best possible action given a(·).
8This payoff profile is nearby in an ex ante sense but may differ in its ex interim payoffs.
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We establish that the above constitutes an equilibrium. Observe that the receiver’s beliefs

are consistent with Bayes’ rule.9 The receiver plays a best response after every message by

construction. Also by construction, no type of the sender has a profitable deviation to an

on-path message, and Assumption 1 and Assumption 2 together imply that no type could

profitably deviate to an off-path message. ■

Lemma 2. If Assumption 3 is satisfied, then for every achievable payoff profile (u∗
S, u

∗
R) and

every ε > 0, there is a finite partitional segmentation that achieves payoffs within ε of (u∗
S, u

∗
R).

Proof sketch. Fix an achievable payoff profile (u∗
S, u

∗
R), a segmentation σ and best response

achieving this payoff profile, and ε > 0. To illustrate the logic, we assume that the receiver

plays a(G) for all G ∈ suppσ. Figure 1 depicts the three steps of the argument.

σ σ1 σ2 σ3

close belief → close action finite finite partitional

Figure 1. The approximation process for Lemma 2.

Because optimal actions may not be lower hemicontinuous in the belief, even small per-

turbations of the belief can significantly change the receiver’s best response and thereby

significantly alter the sender’s payoff. We sidestep this issue by first perturbing any segment

G such that in the perturbed segment, all optimal actions are close to a(G): Assumption 3(b)

assures that for every G ∈ suppσ, there is a nearby segment H such that any best response to

H is arbitrarily close to a(G). We obtain a new segmentation σ1 by replacing each G ∈ suppσ

with its corresponding H.10 By choosing H sufficiently close to G, the receiver’s payoff under

σ1 is within ε/3 of u∗
R because by Assumption 3(a), the receiver’s payoff from choosing an

optimal action is continuous in the belief. The sender’s payoff under σ1 is also within ε/3 of

u∗
S because any best response to H is arbitrarily close to a(G) and because the sender’s payoff

is continuous in the action for each type.

The second step converts σ1 to a finite segmentation σ2 by “merging” segments in σ1 that

are sufficiently close to each other into a single segment, which is the average of the aforemen-

tioned segments. Because ∆(Θ) is compact, the number of resulting “average segments” can

be chosen to be finite. Because the receiver’s best-response correspondence is upper hemi-

continuous, any best response to an “average segment” in σ2 is sufficiently close to any best

response to any segment in σ2 that is merged into it. Consequently, the payoffs under σ2 are

within ε/3 of those under σ1.

9Since σ is finite partitional, the set of types that are contained in multiple segments have F -measure
zero. Therefore, the behavior of such types does not affect the receiver’s beliefs.

10To maintain Bayes’ plausibility, we reduce the probability of each segment slightly and create one addi-
tional segment.
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Our last step identifies a finite partitional segmentation σ3 that achieves payoffs within

ε/3 of those under σ2. Loosely speaking, we partition the type space into sufficiently small

cubes, and approximate each of the finitely many segments in σ2 using a collection of such

cubes, which is possible because F is absolutely continuous. The statement on payoffs then

follows from Assumption 3(a). Therefore, the payoffs under σ3 are within ε of (u∗
S, u

∗
R). ■

3.5 Finite Types

The proof of Theorem 1 relies on the prior being atomless but a similar result holds for

any finitely supported prior in which no single type has excessive mass. To establish this

conclusion, we hold fixed the setting of Section 2, including an ambient type space Θ ⊆ Rn

that is compact, and consider a prior F whose support is a finite subset of Θ.11

Theorem 2. Suppose Assumptions 1, 2, and 3 hold. For every ε > 0, there is γ > 0 such

that if F has finite support with F ({θ}) ≤ γ for every type θ, then for every achievable payoff

profile (u∗
S, u

∗
R), there is an equilibrium of the disclosure game whose payoffs are within ε of

(u∗
S, u

∗
R).

Theorem 2 offers a finite analogue of our main result. The key step shows that once types

have sufficiently low mass, any finite segmentation can be approximated (in the appropriate

sense) by a partitional one. The requirement that no type has excessive mass is necessary for

our conclusion, as we illustrate below.

Example 4. Consider an adaptation of Example 1 in which the buyer’s type θ is drawn from

the binary set {θ, θ} in which θ > 0 and suppose that the optimal uniform price, p = θ.

The buyer-optimal segmentation would feature two segments, one comprising θ alone and the

other featuring a pool of both types such that the monopolist prices at θ. Although this

setting satisfies Assumptions 1 to 3 (shown in Section 4.1), the payoff profile induced by this

segmentation cannot be approximated by an equilibrium of the disclosure game. The issue is

that, in equilibrium, type θ mixes between messages {θ} and {θ, θ} only if the two messages

result in the same price. Given that the former message results in a price of θ, the buyer’s

equilibrium payoff must be 0.12

11Observe that as to whether Assumptions 1, 2, and 3 hold is independent of the prior.
12A different conclusion obtains were the buyer able to do interim information design (Perez-Richet, 2014;

Koessler and Skreta, 2023; Zapechelnyuk, 2023; Madarasz and Pycia, 2024). If the buyer publicly chooses a
Blackwell experiment after learning her type, for every information structure, there exists an equilibrium in
which all buyer types choose that information structure. Clark and Yang (2024) propose a model of partially
informed disclosure that nests both interim information design and standard disclosure games.
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4 Applications

We use our framework to understand how much information a consumer would disclose about

her preferences in a market, when an asset seller discloses information to avoid an Akerlof

lemon’s problem, and how insurees would disclose information—e.g., genetic test results—in

an insurance market. In the Supplementary Appendix, we also study policy negotiations with

incomplete information. In these applications, we also develop additional findings.

4.1 Monopoly Pricing

Below, we show that the leading example of monopoly pricing satisfies the assumptions of

our model. Our main result then implies that the set of achievable payoffs characterized by

Bergemann, Brooks, and Morris (2015) can be supported virtually as equilibrium payoffs of

the disclosure game. We sketch the logic for how equilibria of the disclosure game approximate

the payoffs of the consumer-optimal segmentation and we characterize when such equilibria

require non-interval messages. While our focus is on monopoly pricing, we show that this

logic also applies in competitive markets with differentiated products. Finally, we show that

the truth-leaning refinement selects equilibrium payoffs on the efficiency frontier.

The model corresponds to that of Example 1: a monopolist (he) sells a product to a single

consumer (she), who demands a single unit. The consumer’s valuation θ is drawn according

to an absolutely continuous CDF F with support on Θ = [θ, θ] where θ ≥ 0. The monopolist’s

reservation value is 0. We augment this standard game with a disclosure stage according to

the following timeline. The consumer first observes θ and sends a message m ∈ M(θ) to

the monopolist. The monopolist then sets a price a ∈ [0, θ]. A type-θ consumer’s payoff is

uS(a, θ) = max{θ − a, 0}, and the monopolist’s payoff is uR(a, θ) = a1a≤θ.

Bergemann, Brooks, and Morris (2015) show that a payoff profile is achievable so long as

(i) the consumer’s payoff is nonnegative, (ii) the monopolist’s payoff is no less than uR, his

payoff from charging the optimal uniform price, and (iii) the total payoff is no more than the

maximal aggregate surplus w. We have already shown that this setting satisfies Assumptions 1

and 2. We establish that Assumption 3 also holds; this argument is involved and for one of

the steps, we use Yang (2023). Therefore, every achievable payoff can also be approximated

through an equilibrium of the disclosure game.

Proposition 1. For every payoff profile (u∗
S, u

∗
R) with u∗

S ≥ 0, u∗
R ≥ uR, and u∗

S + u∗
R ≤ w,

and every ε > 0, there is an equilibrium of the disclosure game that supports payoffs within ε

of (u∗
S, u

∗
R).

Conceptually, this result highlights how voluntary disclosure offers a potential microfoun-

dation for information design in markets: all payoff profiles in the BBM triangle can be
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(virtually) supported with hard information that flows directly from the consumer to the

seller, without requiring an intermediary to know the consumer’s value. As highlighted ear-

lier, Bergemann and Morris (2019) caution against interpreting information design in markets

literally as it would require an intermediary that both knows the consumer’s value and can

commit to an information structure. Our result shifts the focus from such an intermediary to

one who can simply verify claims about consumer valuations.13

Given the importance of this setting, we offer a heuristic sketch of how we approximate

payoffs of the consumer-optimal segmentation in an equilibrium of the disclosure game. Fol-

lowing that sketch, we establish additional results.

Example 5. For expositional simplicity, we consider a prior F that is the equal mixture of two

Pareto distributions, one starting at 1 and the other at 2. A Pareto distribution creates an

“equirevenue” demand curve in that that all prices above the starting point yield the same

revenue to the monopolist. The consumer-optimal segmentation splits the aggregate market

into two segments: a low-price market that is the Pareto distribution starting at 1, denoted F1

in Figure 2 (unnormalized), and a high-price market that is the Pareto distribution starting

at 2, denoted F2. The monopolist charges prices 1 and 2 respectively in the two segments.

F

θ1 2

F1
F2

1 2

Figure 2. We depict the prior CDF F . The consumer-optimal segmentation splits the market into
F1 (unnormalized), which elicits a price of 1 from the monopolist, and F2, which elicits a price of 2.

We first show that no equilibrium of the disclosure game can attain the payoffs from this

segmentation exactly. The segmentation splits types θ ≥ 2 to two different segments, so

replicating it in an equilibrium of the disclosure game would require these types to randomize

across messages, some leading to a price of 1 and others to a price of 2. But a buyer would

mix only if the two messages yielded her the same payoff. Since the buyer strictly prefers the

message that leads to the lower price, such randomization is untenable without commitment.

However, we can approximate these payoffs. In Figure 3, we illustrate a segmentation in

13Fainmesser, Galeotti, and Momot (2024) and Galperti, Liu, and Perego (2024) offer alternative founda-
tions for how an intermediary may learn the consumer’s value: the former studies a platform that learns from
past purchases and the latter analyzes an intermediary that purchases consumer data.
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F

m1 m2 m1 m2 m3

θ

Figure 3. The above constructs three market segmentations, one of which approximates F1, one
of which approximates F2, and the third contains some high types.

which (i) all types in m1 send message m1, (ii) all types in m2 (except those on the boundary

with m1) send message m2, and (iii) all sufficiently high types send message m3. The messages

m1 and m2 are constructed so that the receiver’s posterior beliefs closely approximate F1 and

F2, respectively, up until the point where types enter m3. We show that this segmentation

can be supported by an equilibrium of the disclosure game and that its payoffs approximate

those of the consumer-optimal segmentation.

To address the first point, note that there are only three on-path messages. We rule out

deviations to any off-path message m by assigning skeptical beliefs that put probability 1 on

the worst-case type maxθ∈m θ. Given such beliefs, the monopolist charges a price that equals

that type. These resulting prices make deviating to off-path messages unprofitable for the

consumer, including those messages that fully reveal her type. We then consider deviations

to other on-path messages. The only types that access more than one on-path messages are

those at the (pairwise) intersections of m1, m2, and m3. Our construction assures that all

boundary types send the message that results in the lower price.

Finally, we argue that this segmentation delivers payoffs close to those of the consumer-

optimal segmentation. Let θ̃ denote the lowest type in m3. Observe that given beliefs F1,

the monopolist is indifferent between charging a price of 1 and 1 + ε, which reflects that his

inframarginal gains from raising the price beyond 1 is exactly offset by his marginal loss from

excluding consumers in [1, 1 + ε). Truncating the belief to [1, θ̃] breaks his indifference: the

truncation reduces the gains from charging a higher price but leaves the loss undiminished,

making 1 the uniquely optimal price. A message m1 that induces beliefs close to the truncated

F1 must then elicit a price close to 1: the appropriate analogue of Berge’s Theorem implies

that beliefs converging to the truncated F1 must induce prices that converge to the uniquely

optimal limit price. By the same reasoning, the monopolist’s price following message m2

must be close to 2. Given that the mass of types in m3 can be made arbitrarily small, ex ante
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payoffs approximate those of the consumer optimal segmentation. ■

The construction above sketches how an equilibrium of the disclosure game can deliver

payoffs close to those of the consumer-optimal segmentation. One may wonder what structural

features consumer-optimal equilibria must exhibit. We show below that a general property of

these equilibria is that some low-price segments—such as segment m1 in the construction—

must pool together high and low types while excluding intermediate ones. This non-monotone

pooling is not an artifact of the example but is instead intrinsic to attaining the consumer-

optimal benchmark.

To formalize this finding, we say that an equilibrium uses interval messages if for almost

every type θ, its equilibrium message ρ(θ) is a closed interval. We also call an aggregate market

unimprovable if the monopolist’s optimal uniform price—i.e., the price he would charge based

solely on his prior—equals θ, the lowest type. Unimprovable markets are atypical; in most

settings, the monopolist finds it optimal to charge prices that exclude consumers with low

valuations. The result below links these two notions.

Proposition 2. There are equilibria in interval messages that approximate the consumer-

optimal segmentation if and only if the aggregate market is unimprovable.

Proposition 2 shows that interval messages suffice only when the monopolist would serve all

consumer types in the aggregate market; otherwise, any consumer-optimal equilibrium must

feature segments that pool some types while excluding those in between. The “if” direction is

immediate: if the aggregate market is unimprovable, the fully concealing equilibrium—which

uses only interval messages—attains the payoffs of the consumer-optimal segmentation. The

“only if” direction is more subtle. The key idea is that if an interval message pools low and

high types to steer the monopolist to offer a price discount, all intermediate types have the

option to mimic those types and secure the same discount. The monopolist is willing to serve

all of these types only if the aggregate market is unimprovable.

We interpret these results in the context of regulatory measures that give consumers control

of their data. Our results suggest that an intermediary or data collective capable of verifying

statements about consumer valuation could substantially benefit consumers all the way to the

payoffs of the consumer-optimal segmentation. Crucial to this prospect is that consumers can

verifiably disclose rich statements, certifying that they belong to a “bucket” without having

to disclose their exact valuation. This result connects to group-pricing schemes observed in

practice in which a third-party intermediary verifies that a consumer belongs to a designated

group—such as senior citizens, students, or low-income households—and provides evidence

that triggers a price discount. Our results also highlight the power of finetuned disclosures:

while interval-style messages may benefit consumers, consumers may benefit from using more

elaborate messages that pool together extreme valuations.
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Hard or verifiable information is crucial for the consumer to obtain such gains: were she

able to use only cheap-talk messages, all equilibria essentially collapse to the babbling outcome

in which the monopolist ignores their messages and charges the optimal uniform price.14

While our analysis focuses on monopolistic markets, a similar logic applies to competitive

markets with differentiated products. Suppose there are two or more firms, and a consumer’s

type θ := (θ1, . . . , θn) encodes her valuation for each of the n products. Consider the disclosure

game in which the consumer of type θ privately discloses a message m in M(θ) to each

firm. We argue that there exist equilibria of this multi-firm disclosure game whose payoffs

approximate those of the consumer-optimal segmentation characterized by Elliott, Galeotti,

Koh, and Li (2024). In these equilibria, the consumer fully reveals her type to all firms

except her favorite one, which induces all her non-preferred firms to compete aggressively for

her business, setting a price that equals marginal cost. To her favorite firm, she discloses

information only partially, mirroring the disclosure strategy in the monopoly problem. The

favored firm then prices optimally given the disclosure it receives, knowing that all other firms

are competing intensely for the consumer’s business.

Returning to monopoly pricing, Proposition 1 shows that some equilibria of the disclosure

game are inefficient. Our next result proves that a refinement standard in disclosure games

selects efficient equilibria. This refinement is the “truth-leaning equilibrium” proposed by

Hart, Kremer, and Perry (2017) who—invoking the Twainian adage, “When in doubt, tell the

truth”—study limit equilibria of perturbed games in which the sender accrues an infinitesimal

gain if she shares the whole truth.

Formally, for a function ε : Θ → R>0, consider the perturbed game Γε in which the

consumer’s payoff increases by ε(θ) when the type is θ and she sends message {θ}. An

equilibrium ((ρ, τ), µ) of the original game is truth-leaning if there exist (i) a sequence of

functions εn that converges uniformly to 0, where 0 is a constant function that maps every

θ to 0, and (ii) a sequence ((ρn, τn), µn) that converges uniformly to ((ρ, τ), µ) such that

for each n ∈ N, ((ρn, τn), µn) is an equilibrium of the perturbed game Γεn .15 Proposition 3

characterizes truth-leaning equilibria of this game.

Proposition 3. The following hold:

(a) The payoff profile of every truth-leaning equilibrium is efficient: (u∗
S, u

∗
R) is supported

by a truth-leaning equilibrium only if u∗
S + u∗

R = w.

14Hidir and Vellodi (2021) show that cheap talk can be effective when the monopolist chooses both price
and product design.

15Hart, Kremer, and Perry (2017) also require that in any perturbed game, every type of the sender fully
reveal her type with positive probability. This requirement has no bite in our setting.
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(b) For every efficient payoff profile, there is a nearby payoff profile supported by a truth-

leaning equilibrium: for every (u∗
S, u

∗
R) with u∗

S ≥ 0, u∗
R ≥ uR, and u∗

S + u∗
R = w, and

every ε > 0, there is a truth-leaning equilibrium of the disclosure game that supports

payoffs within ε of (u∗
S, u

∗
R).

16

Here is the logic. The only scope for inefficiency is that in some segment, the optimal price

exceeds some consumer types. Such behavior cannot arise in an equilibrium of the perturbed

game because those consumer types would then be better off revealing the whole truth to

accrue the infinitesimal bump. Consequently, every truth-leaning equilibrium is efficient. A

more subtle intuition underlies why all efficient payoff profiles can be approximately supported

by a truth-leaning equilibrium. We show that for every finite partitional equilibrium that

supports payoff (ũS, ũR), there is an efficient truth-leaning equilibrium that supports payoffs

(ũS, w − ũS). Proposition 1 then implies that any efficient payoff profile can be approached

using a truth-leaning equilibrium.

4.2 Disclosures about Asset Quality

We study a financial market in which an asset seller chooses how much information to divulge

prior to sale. We show that when facing a single buyer, the seller strategically discloses

information partially, revealing just enough to both alleviate adverse selection and diminish

the buyer’s bargaining power. By contrast, if multiple buyers compete for the asset, the unique

equilibrium involves the seller releasing all information. Competition thus spurs disclosure.

We then use our characterization of the seller-optimal equilibrium to identify when the seller

has strongest incentives to recruit a second buyer.

We begin with the setting of a single buyer. A seller (she) sells a single unit of an asset. Its

quality is θ drawn according to an absolutely continuous CDF F with support on Θ = [θ, θ].

The seller’s value of keeping the asset is c(θ) ≥ 0, which is weakly increasing and continuous in

θ. The buyer’s value for the asset is v(θ), which strictly exceeds c(θ), is strictly increasing and

continuous in θ. Prior to sale, the seller can disclose evidence: given an asset quality θ, the

seller sends a message m ∈ M(θ) to the buyer. The buyer then sets a price a ∈ [0, v(θ)], and

the seller chooses to accept or reject the offer. The seller’s payoff is uS(a, θ) = max{a, c(θ)},
and the buyer’s is uR(a, θ) = (v(θ)−a)1a≥c(θ). Observe that uS(·, θ) is continuous and uR(·, θ)
is upper semicontinuous for every type θ.

Total surplus is maximized by having trade, resulting in an ex ante surplus of E[v(θ)].
However, absent disclosure, this market suffers from adverse selection (Akerlof, 1970) given

16Equivalently, Proposition 3(b) identifies that there is a dense set of payoff profiles on the efficiency frontier
of the BBM triangle that can be supported by (truth-leaning) equilibria of the disclosure game.
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that at a given price a, only types θ for whom c(θ) ≤ a would be willing to trade. The buyer’s

payoff then is uR := maxa∈[0,v(θ)]
∫
{θ∈Θ:c(θ)≤a}(v(θ)− a) dF (θ).

The set of achievable payoffs of this setting, characterized by Kartik and Zhong (2025),

corresponds to all payoff profiles in which total surplus is no more than E[v(θ)], the seller’s

payoff is no less than E[c(θ)], and the buyer’s payoff is no less than uR. Because our three as-

sumptions hold in this disclosure game—the sender’s complete information payoff c(θ) is lower

than any incomplete information payoff, every message m has a worst-case type minθ∈m θ, and

we establish continuity using an approach from variational calculus—every achievable payoff

can be virtually supported as an equilibrium.

Proposition 4. Suppose that there is a single buyer. Then for every payoff profile (u∗
S, u

∗
R)

with u∗
S ≥ E[c(θ)], u∗

R ≥ uR, and u∗
S + u∗

R ≤ E[v(θ)], and every ε > 0, there is an equilibrium

of the disclosure game that supports payoffs within ε of (u∗
S, u

∗
R).

An implication of Proposition 4 is that, given a single buyer, the seller can partially disclose

evidence so that trade is nearly fully efficient and yet the buyer does not obtain more than

his “Akerlof payoff” uR. Thus, the seller can disclose evidence that counteracts the lemon’s

problem while reaping all those gains herself.

Now suppose that there are two or more buyers, each of whom has value v(θ) for an asset

of quality θ. We consider a disclosure game in which the seller sends a message m in M(θ)

publicly to the buyers, each buyer then simultaneously offers a price in [0, v(θ)], and the seller

then accepts one offer if any. In equilibrium, each buyer offers a price equal to his expected

value of the asset conditional on all available information, as per standard Bertrand logic. We

argue that this competitive price-setting leads to full unraveling.

Proposition 5. Suppose that there are two or more buyers. Then every equilibrium is outcome

equivalent to the fully revealing equilibrium in which the seller discloses {θ} for every asset

quality θ.

To see why this result holds, suppose towards a contradiction that there were an equilib-

rium with partial disclosure. Consider a pool of types that all send some message m, inducing

belief G, and let θ̂ be the highest type in the support of G. In this putative equilibrium, the

seller of type θ̂ cannot obtain a payoff higher than max{EG[v(θ)], c(θ̂)}: either she sells the

asset at a price bounded above by EG[v(θ)] or she keeps the asset. Disclosing the message

{θ̂} is a profitable deviation because it fetches a strictly higher price, v(θ̂). Hence, for every

pool, the highest type profits from separating thereby unraveling any pooling equilibrium.

Central to this logic is that the competitive market results in a disclosure game that satis-

fies Grossman-Milgrom’s payoff monotonicity condition: as v is strictly increasing, the seller

would prefer to induce belief G′ over G whenever G′ first-order stochastically dominates G.
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The contrast between Propositions 4 and 5 offers a new perspective on how competition

promotes disclosure. Milgrom and Roberts (1986) initiated the study of competition and

disclosure, focusing on how competition among multiple informed senders induces greater

disclosure to a single uninformed receiver. Our results highlight the opposite force: here,

competition among multiple uninformed receivers compels a single sender to divulge all in-

formation. Their competition ensures that the sender reaps all the gains from trade, leaving

her with no profitable reason to withhold information.

We use this result to evaluate when a seller has the strongest motive to recruit buyers. In

the competitive market, her ex ante payoff is E[v(θ)] whereas when facing a single buyer, she

accrues approximately E[v(θ)] − uR in the seller-optimal equilibrium. Recall that uR is the

buyer’s “Akerlof payoff,” corresponding to what he obtains in the lemon’s problem without

disclosure. All else equal, the seller then has less to gain from a second buyer when the

Akerlof payoff is lower. If adverse selection is severe (uR ≈ 0), she can kill two birds—adverse

selection and the buyer’s bargaining power—with the single stone of partial disclosure.

4.3 Insurance Contracting

Should an insurance company be allowed to condition its contracts based on an insuree’s

disclosures? This question has been salient recently in the context of genetic testing, with

regulations that prohibit insurers from using genetic information. We evaluate this debate

within the context of our framework. We show that the standard monopolistic insurance

model (e.g., Stiglitz, 1977; Chade and Schlee, 2012) satisfies our three main assumptions. Our

main finding then implies that an insuree could use her hard information to counteract the

bargaining power of the insurer and attain the payoffs of her optimal information structure.17

An insuree has initial wealth w > 0, faces a potential loss ℓ ∈ (0, w) with probability θ,

and has risk preferences represented by a strictly increasing, continuously differentiable, and

strictly concave (Bernoulli) utility function v : R≥0 → R. The probability of loss, θ, is the

insuree’s type, and is her private information. The insuree’s outside option at every stage is

to purchase zero insurance.

The insurer is risk neutral and has beliefs about the insuree’s type given by the absolutely

continuous CDF F with density f and support Θ := [θ, θ] ⊆ (0, 1). Without loss, the insurer

chooses a menu of contracts (x(θ), t(θ)) ∈ R2 for each type θ comprising a premium t(θ)

and an indemnity payment x(θ) in the event of a loss, subject to incentive and participation

constraints. The expected profit from a contract (x, t) chosen by a type-θ insuree is t− θx.

17Our work complements recent work on genetic testing in insurance markets: Pram (2023) focuses on costs
of acquiring evidence and Azevedo, Beauchamp, and Karlsson Linnér (2025) study how genetic prediction
influences the degree of adverse selection.
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We append a disclosure stage to this problem. After observing her type θ, the insuree

sends a message m ∈ M(θ) to the insurer. The insurer then offers a menu of contracts and

the insuree selects one of the contracts or chooses no insurance.

Formulated this way, it is difficult to verify our continuity notion directly. Therefore, we

reformulate this game such that the insurer directly chooses the expected utility of every type

of the insuree instead of offering a menu of contracts (see Chade and Schlee, 2012). Observe

that any incentive-compatible menu of contracts (x(θ), t(θ)) can be reformulated as a menu

(D(θ), a(θ)), where

D(θ) := v(w − t(θ))− v(w − ℓ+ x(θ)− t(θ)),

a(θ) := v(w − t(θ))− θD(θ).

If a type-θ insuree accepts the menu, v(w − t(θ)) is her utility when no loss occurs, D(θ) is

the drop in utility when she suffers a loss, and a(θ) is her indirect utility.

By standard arguments, incentive compatibility implies that the indirect utility function

a(·) is convex; in this case, a′(θ) = −D(θ) almost everywhere. Given the insurer’s belief G,

any optimal menu satisfies the properties that the participation constraint binds for the lowest

type and the utility reduction in the event of a loss, D(θ) being non-negative and bounded

above by D0 := v(w)− v(w − ℓ) for G-almost every θ (Chade and Schlee, 2012, Theorem 1).

Observe that D0 measures the drop in utility from a loss when there is no insurance. Denoting

the space of continuous real-valued functions on Θ by C (Θ) (equipped with the sup-norm),

it is therefore without loss to restrict attention to the following set of indirect utilities:

A :=

{
a ∈ C (Θ) :

a(θ) = θv(w − ℓ) + (1− θ)v(w),

a is weakly decreasing, convex and D0−Lipschitz

}
. (1)

The insurer’s expected profit from a menu (D, a) chosen by a type-θ insuree is

u(D, a, θ) := w − θℓ− (1− θ)v−1(a(θ) + θD(θ)︸ ︷︷ ︸
no loss

)− θv−1(a(θ)− (1− θ)D(θ)︸ ︷︷ ︸
loss

),

where w− θℓ is type-θ insuree’s total wealth in expectation, and the remaining terms are the

insurer’s expected cost of providing the utilities promised to the insuree. To write the insurer’s

payoff as a function of a alone, we proceed with the following step. Since a′(θ) = −D(θ) almost

everywhere, the insurer’s payoff is determined by a almost everywhere. At any θ where a is not

differentiable, because a is convex andD0-Lipschitz, the insurer choosesD(θ) ∈ ∂a(θ)∩[0, D0],

where ∂a(θ) is the subdifferential of a at θ. Therefore, we can interpret the indirect utility a as

the insurer’s action: the insuree’s payoff from action a ∈ A is uS(a, θ) = a(θ), and the insurer’s
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payoff from action a is uR(a, θ) = maxD∈∂a(θ)∩[0,D0] u(D, a, θ).18 In the appendix, we verify

that A is compact, uS(a, θ) is continuous in a for each θ, and uR(a, θ) is upper semicontinuous

in (a, θ). We show that the sender’s risk aversion induces an “almost” strict concavity in the

receiver’s payoff function, which allows us to establish that the form of continuity described

in Remark 1 holds. With this reformulation, the following conclusion holds.

Proposition 6. For every achievable payoff profile (u∗
S, u

∗
R) and every ε > 0, there is an

equilibrium of the disclosure game that supports payoffs within ε of (u∗
S, u

∗
R).

Proposition 6 speaks to the regulatory debate on the implications of allowing insurance

companies to condition their contracts based on genetic tests. If the insuree can partially

disclose her test results, then allowing disclosure could potentially lead to significant efficiency

gains or even approximate the insuree-optimal information structure. However, the insuree

could also be compelled to disclose all evidence, enabling the insurer to capture all efficiency

gains. In light of this equilibrium multiplicity, our results emphasize the role that various

parties—government agencies, intermediaries, and insurance companies themselves—can play

in coordinating behavior towards the public interest.

5 Conclusion

This paper evaluates the full potential of hard information in market and contractual settings

in which the receiver can flexibly adjust prices, transfers, and allocations in response to the

sender’s disclosure. Such settings are canonical in that monopoly pricing, bilateral trade with

interdependent values, insurance contracting, and policy negotiations all share this structure.

In these settings, full revelation typically leaves the sender worst off: once her type is known,

the receiver can tailor the terms of trade to extract her entire surplus. We take this structural

feature as our primary departure from the classical disclosure literature. Combined with two

standard assumptions, it delivers a sharp equivalence result: the set of equilibrium payoffs in

the disclosure game is virtually identical to the set achievable through information design.

Conceptually, this conclusion re-frames the perceived gap between information design and

voluntary disclosure. Information design endows the sender with the full power to commit to

an information structure. By contrast, voluntary disclosure is typically viewed as a commit-

ment problem, a self-defeating trap in which the sender is forced to reveal everything. Our

central finding shows that this gap disappears in many economically important settings: the

sender can use hard information to attain her commitment payoff without having to commit.

From an applied perspective, the findings highlight that hard information not only sub-

stitutes for commitment but also equips the sender with a powerful tool for counteracting

18Because ∂a(θ) is closed for every θ and u(D, a, θ) is continuous, uR(a, θ) is well-defined.
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the receiver’s bargaining advantage. In sender-optimal equilibria, she discloses just enough

information to soften the receiver’s response while withholding the rest to prevent full surplus

extraction. This force highlights the value of intermediaries who can verify statements and

coordinate disclosure. Such intermediaries would enable buyers and insurees to capture nearly

all the gains available under optimal information design.
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Main Appendix

The Main Appendix is organized as follows: Appendix A proves Theorem 1, Appendix B

proves Theorem 2, and Appendix C collects our proofs for monopoly pricing and disclosures

about asset quality, as described in Sections 4.1 and 4.2 respectively.

A Proof of Theorem 1

A.1 Proof of Lemma 1

Fix a finite partitional segmentation σ. Let (u∗
S, u

∗
R) denote the payoff pair that it achieves

and aσ : supp σ → A be the receiver’s best responses that result in these payoffs. Because F

has full support,
⋃

G∈supp(σ) suppG = Θ, as otherwise the segments could not average to F .

Now consider the following messaging strategy of the sender: If θ ∈ supp(G) and θ /∈
supp(H) for any H ∈ supp(σ) such that H ̸= G, the type-θ sender sends message supp(G)

with probability 1. If θ ∈ supp(G) for multiple G ∈ supp(σ), type θ sends message suppH

with probability 1, where H ∈ argmax{G∈suppσ : θ∈suppG} uS(aσ(G), θ). Because σ is finite

partitional, such types are contained in a F -null set and hence do not affect expected payoffs.

The receiver’s belief system is such that whenever she observes message supp(G) for some

G ∈ supp(σ), she updates using Bayes rule and her new belief isG; following any other message

m, her belief is a point mass at the worst-case type θ̂m, as defined in Assumption 2. We specify

the receiver’s strategy as follows: if she observes message supp(G) for any G ∈ supp(σ), she

chooses action aσ(G) (which is optimal for the receiver given belief G); for any other message

m, she chooses action a(θ̂m).

By construction, the receiver is choosing a best response given her beliefs after any message

and beliefs satisfy Bayes’ rule whenever possible. Moreover, the sender never wants to deviate

from her messaging strategy: by messaging according to the strategy described above, his

payoff is at least uS(a(θ), θ) by Assumption 1. If he deviates to an off-path message m, his

payoff is uS(a(θ̂m), θ), which is lower by Assumption 2. By construction, those types that can

send multiple on-path messages choose optimally among feasible on-path messages. Hence,

these strategies and beliefs form an equilibrium and this equilibrium induces the segmentation

σ and payoffs (u∗
S, u

∗
R). ■

A.2 A Preliminary Step for Lemma 2

Lemma 3. Let σ be a finite segmentation with supp(σ) = {F1, . . . , FN}. There is a sequence

of finite partitional segmentations {σm}m∈N with supp(σm) = {Fm
1 , . . . , Fm

N } such that, for
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i = 1, . . . , N , σm(Fm
i ) → σ(Fi) and Fm

i → Fi.

Proof. Without loss of generality, suppose Θ = [0, 1]n. For any m, k ∈ N, partition Θ into at

least m equal-sized cubes; denote this partition by Pm. Partition each P ∈ Pm further into

at least k equal-sized cubes, and denote the collection of all such small cubes by Q. Choose

an assignment of all smaller cubes to {1, . . . , N}, denoted by ℓ : Q → {1, . . . , N}, to minimize

max
i∈{1,...,N}

∑
P∈Pm

∣∣∣∣∣∣F
 ⋃

Q∈Q,Q⊆P,ℓ(Q)=i

Q

− σ(Fi)Fi(P )

∣∣∣∣∣∣ . (2)

Note that this expression goes to zero as k → ∞. Therefore, for eachm, there exists k(m) ∈ N
such that we can partition each cube into k(m) smaller cubes such that (2) is at most 1/m.

Denote this partition by Qm.

Define a finite partitional segmentation by setting, for all measurable B ⊆ Θ,

Fm
i (B) :=

F (B ∩
⋃

Q∈Qm,ℓ(Q)=i Q)

F (
⋃

Q∈Qm,ℓ(Q)=iQ)
and σm(Fm

i ) := F

 ⋃
Q∈Qm,ℓ(Q)=i

Q

 .

It follows that σm(Fm
i ) → σ(Fi) and

∑
P∈Pm |Fm

i (P )− Fi(P )| → 0 as m → ∞.19 Therefore,

for any Lipschitz-continuous function h : Θ → R and i ∈ {1, . . . , N},
∫
h dFm

i →
∫
h dFi.

Hence, Fm
i → Fi. ■

A.3 Proof of Lemma 2

Fix arbitrary ε > 0 and an arbitrary segmentation σ achieving payoffs (u∗
S, u

∗
R).

Step 1: We can assume that the receiver plays a(G) for each G ∈ suppσ.

Indeed, the arguments are symmetric if the receiver plays a(G) for each G ∈ suppσ, and

the conclusion then follows for arbitrary best responses because the sender’s payoff is a convex

combination of the payoffs achieved from always playing a and always playing a.

Step 2: We choose ε′ and δ small enough and define a measurable mapping that maps any

segment G to a closeby segment H such that all best responses in segment H are within δ of

a(G).

19Indeed,
∑

P∈Pm |Fm
i (P )−Fi(P )| = 1

σ(Fi)

∑
P | σ(Fi)

F (
⋃

Q∈Qm,ℓ(Q)=i Q)F (P ∩
⋃

Q∈Qm,ℓ(Q)=i Q)−σ(Fi)Fi(P )| →

0 by definition of ℓ (cf. (2)) and because σ(Fi)

F(
⋃

Q∈Qm,ℓ(Q)=i Q)
→ 1.
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Fix ε′ > 0 and δ > 0 small enough. Let t : ∆(Θ) → ∆(Θ) be a measurable function that

sends any segment G to t(G), where dt(G)
dG

≤ 1 + ε′ and any best response given segment t(G)

is in Bδ(a(G)). Assumption 3(b) ensures that such a function exists.

Step 3: We define σ1 by considering a (scaled-down) version of the pushforward measure of

σ under t and adding a mass point at an extra segment containing the remaining types.

For any (measurable) Z ⊆ ∆(Θ), define σ̃(Z) := 1
1+ε′

σ(t−1(Z)) to be a (scaled-down)

pushforward of σ under t.

For any (measurable) E ⊆ Θ, (t(G))(E) =
∫
E

dt(G)
dG

dG ≤ (1 + ε′)G(E) by the bound on

the Radon-Nikodym derivative. Therefore,(∫
H dσ̃(H)

)
(E) =

(
1

1 + ε′

∫
t(G) dσ(G)

)
(E) ≤ 1

1 + ε′

∫
(1 + ε′)G(E) dσ(G) = F (E)

where the first equality follows from the definition of σ̃ and the last equality follows since∫
G dσ(G) = F . Intuitively, σ̃ does not “exhaust” all types available under the prior (and isn’t

even a probability distribution over segments). Therefore, we add a segment Gextra that con-

tains all the remaining types: Let Gextra :=
F−

∫
H dσ̃(H)

1−σ̃(∆(Θ))
and note that

(
F −

∫
H dσ̃(H)

)
(Θ) =

1 − 1
1+ε′

= 1 − σ̃(∆(Θ)). Hence, Gextra ∈ ∆(Θ). Now define σ1 := σ̃ + δGextra(1 − σ̃(∆(Θ))),

where δGextra is a Dirac measure at Gextra. Simple accounting shows that σ1 ∈ ∆(∆(Θ)) and∫
G dσ1(G) = F .

Step 4: We argue that the payoffs under σ1 are within ε/3 of (u∗
S, u

∗
R).

A fraction 1
1+ε′

of types end up in a segment under σ1 in which any best response for the

receiver is within δ of the best response the receiver would have chosen under segmentation

σ. Since the sender’s payoff is continuous in the action for each type, we can choose ε′ > 0

and δ > 0 in Step 2 small enough such that the expected payoff for the sender is within ε/3

of u∗
S. Similar arguments apply to the receiver’s payoff: We can choose ε′ > 0 small enough

such that, for any segment G, G and t(G) are close in the Levy-Prokhorov metric (which

metricizes the weak∗-topology), and hence the resulting payoffs for the receiver are close by

Assumption 3(a). Moreover, by choosing ε′ > 0 small enough, the extra segment Gextra gets

arbitrarily small probability under σ1, and hence the receiver’s payoff is within ε/3 of u∗
R.

Step 5: We define a new segmentation σ2, which is an approximation of the segmentation

σ1, such that σ2 contains finitely many segments and such that payoffs under σ2 are within

ε/3 of the payoffs under σ1.

Fix δ2 > 0. For any G ∈ supp σ̃, there is an εG-ball (in the Levy-Prokhorov metric) around

G such that any best response to any G′ ∈ BεG(G) is within δ2 of any best response given G
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(by Assumption 3(a)). Since supp σ̃ is compact, finitely many of these balls, say {B1, ..., Bm},
cover supp σ̃, where Bi := BεGi

(Gi). We form a new segmentation σ2 by merging all segments

that lie in a given ball. Formally, σ2 has at most m + 1 segments in its support; the first

segment is the barycenter of the set B1 and, for i > 1, the ith segment is defined recursively

as the barycenter of the set Bi \
⋃i−1

j=1Bj under σ̃,

Hi :=

∫
Bi\

⋃i−1
j=1 Bj

G dσ̃(G)

σ̃(Bi \
⋃i−1

j=1Bj)

whenever σ̃(Bi \
⋃i−1

j=1Bj) > 0 and we define σ2({Hi}) := σ̃(Bi \
⋃i−1

j=1Bj) and σ2({Gextra}) :=
σ1({Gextra}).20 One can verify that open balls in the Levy-Prokhorov metric are convex.

Therefore, Hi ∈ Bi and any best response to the merged segment Hi is within 2δ2 of any best

response to any G ∈ Bi. By choosing δ2 small enough, we obtain a segmentation with finite

support such that payoffs under σ2 are within ε/3 of the payoffs under σ1.

Step 6: We define a new segmentation σ3 which is finite partitional and approximates σ2.

We argue that the payoffs under σ3 are within ε/3 of the payoffs under σ2.

By Lemma 3, for any δ′ > 0 we can approximate the segmentation σ2 by a finite partitional

segmentation σ3 such that to any segment G in σ2 there is a unique corresponding segment

H with |σ3(H) − σ2(G)| < δ′ and dP (G,H) < δ′, where dP denotes the Levy-Prokhorov

metric. By Assumption 3(a) we can choose δ′ small enough so that the receiver’s payoff under

segmentation σ3 is within ε/3 of the payoff under segmentation σ2. Similarly, by choosing δ′

small enough, any optimal action given belief H is close to any optimal action under G and

hence the sender’s expected payoff given segmentation σ3 is within ε/3 of the expected payoff

given segmentation σ2.

It follows that payoffs under σ3 are within ε of (u∗
S, u

∗
R). ■

Remark 1. The proof of Lemma 2 still goes through if we replace Assumption 3(b) by the

following alternative assumption:

For any G ∈ suppσ and any ε, δ > 0, there is a distribution H (H) whose Radon-

Nikodym derivative satisfies dH
dG

≤ 1 + ε (dH
dG

≤ 1 + ε) and any best response a′

to H (H) is such that |uS(a
′, θ)− uS(a(G), θ)| < δ (|uS(a

′, θ)− uS(a(G), θ)| < δ)

for H(H)-almost every θ. Moreover, the functions that send G to H and H are

measurable.

20For simplicity, we assume Hi ̸= Hj for i ̸= j and Hi ̸= Gextra. Our arguments apply without this
assumption.
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Since suppH ⊆ suppG, any action optimal under H yields almost the same payoff for types

in suppH. Thus, by choosing sufficiently small ε′, δ > 0 in Step 2, Step 4 still goes through.

B Proof of Theorem 2

We first prove the following preliminary lemma. Without loss of generality, we assume that

Θ is unidimensional.

Lemma 4. For every N ∈ N, q > 0, and δ > 0, there exists γ > 0 such that the following

holds: If F has finite support with F ({θ}) < γ for all θ, and σ is a finite segmentation with

supp(σ) = {F1, . . . , Fn} where n ≤ N and σ(Fi) ≥ q for all i, then there exists a finite

partitional segmentation σ̄ with supp(σ̄) = {F̄1, . . . , F̄n} such that for each i = 1, . . . , n:

|σ̄(F̄i)− σ(Fi)| < δ and dP (F̄i, Fi) < δ,

where dP denotes the Lévy-Prokhorov metric.

Proof. Fix N ∈ N, q > 0, and δ > 0. Define γ :=
qδ

N+1
and suppose F has finite support with

F ({θ}) < γ for all θ. Let σ be any segmentation with n ≤ N segments satisfying σ(Fi) ≥ q

for all i. We construct the finite partitional segmentation σ̄.

Let J := suppF = {θ1, . . . , θM}, where for any s, t ∈ {1, . . . ,M} with s < t, θs < θt.

Consider an assignment rule ℓ : J → {1, . . . , n} defined as follows: ℓ(θ1) = 1, and for every

s > 1, define iteratively21

ℓ(θs) := min{i ∈ {1, . . . , n} : F (Xs−1
i ) ≤ σ(Fi)Fi(θs−1)},

where Xs−1
i = {θ ∈ {θ1, . . . , θs−1} : ℓ(θ) = i}. For every i = 1, . . . , n, define Ji := {θ ∈

J : ℓ(θ) = i}; {J1, . . . , Jn} is a partition of J . Define a finite partitional segmentation σ̄

with supp(σ̄) = {F̄1, . . . , F̄n} by setting, for every measurable B ⊆ Θ, F̄i(B) := F (B∩Ji)
F (Ji)

, and

σ̄(F̄i) := F (Ji) for each i = 1, . . . , n. Since F ({θ}) < γ for all θ ∈ J , we obtain

σ̄(F̄i)F̄i(θ) ≤ σ(Fi)Fi(θ) + γ (3)

for all θ ∈ Θ and i = 1, . . . , n. Because both σ and σ̄ are segmentations,
∑

i σ̄(F̄i)F̄i(θ) =

21To ease exposition, we slightly abuse notation by letting G(θ) := G([θ, θ]) for all θ ∈ Θ for any probability
measure G with support on J , where θ := inf Θ.
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F (θ) =
∑

i σ(Fi)Fi(θ), and hence

n∑
i=1

σ(Fi)Fi(θ) = σ̄(F̄k)F̄k(θ) +
∑
i ̸=k

σ̄(F̄i)F̄i(θ) ≤ σ̄(F̄k)F̄k(θ) +
∑
i ̸=k

(σ(Fi)Fi(θ) + γ)

for all θ ∈ J and k = 1, . . . , n, where the inequality follows from (3). Consequently,

σ̄(F̄i)F̄i(θ) ≥ σ(Fi)Fi(θ)− (n− 1)γ. (4)

Taking θ = θM , inequalities (3) and (4) together imply σ̄(F̄i) − σ(Fi) ≤ γ and σ(Fi) −
σ̄(F̄i) ≤ (n − 1)γ for each i = 1, . . . , n, respectively. Furthermore, dividing by σ(Fi) ≥ q on

both sides of (3) and rearranging, we get

F̄i(θ)− Fi(θ) ≤
γ

σ(Fi)
+

σ(Fi)− σ̄(F̄i)

σ(Fi)
F̄i(θ) ≤

γ

q
+

(n− 1)γ

q
=

nγ

q

for all θ ∈ Θ. Similarly, dividing by σ(Fi) on both sides of (4), we obtain Fi(θ)− F̄i(θ) ≤ nγ/q

for all θ ∈ Θ.

Our choice of γ assures that

|σ̄(F̄i)− σ(Fi)| ≤ (n− 1)γ ≤ (N − 1) ·
qδ

N + 1
< δ,

and

sup
θ∈Θ

|F̄i(θ)− Fi(θ)| ≤
nγ

q
≤ N

q
·

qδ

N + 1
=

Nδ

N + 1
< δ.

By definition of the Lévy-Prokhorov metric, dP (F̄i, Fi) < δ. ■

Proof of Theorem 2. Under Assumptions 1 to 3, the proof of Lemma 1 and the first five steps

in the proof of Lemma 2 go through without any assumption on the prior F . Fix ε > 0. We

show there exists γ > 0 such that if F has finite support with F ({θ}) ≤ γ for all θ, then

for every finite segmentation σ, there exists a finite partitional segmentation σ̄ with payoffs

within ε/3 of those under σ.

Step 1: There exists a segmentation σ̂ with at most K segments, each with probability at least

q, and with payoff change from σ of at most ε/6.

Given any segmentation σ with segments {F1, . . . , Fm}, we construct a new segmentation

as follows: Using Assumption 3 and compactness of ∆(Θ), we can cover ∆(Θ) by at most

K balls {B1, . . . , BK} such that if we merge any segments in σ that lie in a given ball into

a single segment under σ̂—using the notion of merging as defined in Step 5 of the proof of

Lemma 2—payoffs of the sender and receiver under σ̂ differ by at most ε/12 from the payoffs

35



under σ. Note that K depends only on ε. Moreover, we can choose q > 0 small enough

(depending only on ε) such that by merging all segments with probability at most q into a

single segment, payoffs change by at most ε/12.

Step 2: We apply Lemma 4 to show that there is a finite partitional segmentation σ̄ and with

payoff change from σ̂ of at most ε/6.

By Lemma 4, for every δ > 0 we can find a γ > 0 such that as long as F has finite support

with F ({θ}) ≤ γ, there is a finite partitional segmentation σ̄ such that to any segment G in

σ̂ there is a unique corresponding segment H with |σ̄(H)− σ̂(G)| < δ and dP (G,H) < δ. By

Assumption 3(a) we can choose δ small enough so that the receiver’s payoff under segmentation

σ̄ is within ε/6 of the payoff under segmentation σ̂. Similarly, by choosing δ small enough, any

optimal action given belief H is close to any optimal action under G and hence the sender’s

expected payoff given segmentation σ̄ is within ε/6 of the expected payoff given segmentation

σ. Therefore, the payoffs under σ̄ are within ε/6 of the payoffs under σ̂. ■

C Proofs for Section 4

C.1 Proof of Proposition 1

Lemma 5. Let w : [θ, θ] → R be a continuous and strictly increasing function. If A is

an interval of real numbers and the receiver’s payoff is given by uR(a, θ) = w(a)1a≤θ, then

Assumption 3 is satisfied.

Proof. We first verify Assumption 3(a). Recall that uR(a,G) =
∫
uR(a, θ) dG(θ). Let UR(G) :=

maxa∈A uR(a,G) be the receiver’s optimal payoff in segment G. The proof of Theorem

1 in Yang (2023) can be used mutatis mutandis to show that the receiver’s optimal pay-

off UR(G) is continuous under the weak∗ topology, and the best response correspondence

argmaxa∈A uR(a,G) is upper hemicontinuous. Thus, Assumption 3(a) is satisfied.

Verifying Assumption 3(b) requires more work. Let a : ∆(Θ) → R and a : ∆(Θ) → R
denote the mappings that map a segment to the lowest optimal action and the highest optimal

action in that segment, respectively. Because the best response correspondence is upper

hemicontinuous, a is lower semicontinuous, and a is upper semicontinuous. Given ε, δ > 0, we

construct two functions, t : ∆(Θ) → ∆(Θ) and t : ∆(Θ) → ∆(Θ), such that both t and t are

measurable, the Radon-Nikodym derivatives satisfy dt(G)
dG

≤ 1 + ε and dt(G)
dG

≤ 1 + ε for every

G ∈ ∆(Θ), and any optimal action in segment t(G) (t(G)) is contained in (a(G)− δ, a(G)+ δ)

((a(G)−δ, a(G)+δ), respectively). For notational ease, we sometimes suppress the dependence

of a and a on G and simply write a and a for a(G) and a(G), respectively.
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Define the function t : ∆(Θ) → ∆(Θ) by

t(G)(x) :=
min{G(x), 1− κη(G)}

1− κη(G)

where η(G) solves

η(G)

1− η(G)
2w(θ) = max

a∈[a(G)−δ/2,a(G)]
w(a)[1−G(a)]− max

a≤a(G)−δ
w(a)[1−G(a)], (5)

and κ ∈ (0, 1) is small enough so that dt(G)
dG

≤ 1 + ε. Note that η(G) is well-defined and takes

values in (0, 1) because the right-hand side is strictly positive and bounded.

We now establish that t is measurable. First, a is measurable because it is lower semicon-

tinuous. To see that η is measurable, reformulate the first maximization problem on the RHS

of (5) as choosing (a, q) with (a, q) ∈ Γ(G), where

Γ(G) := {(a, q) ∈ [a(G)− δ/2, a(G)]× [0, 1] : 1−G(a) ≤ q ≤ 1−G(a−)}

to maximize w(a)q. The objective function is continuous in a and q, Γ has nonempty compact

values, and by Lemma 1 in Yang (2023), Γ is continuous and hence weakly measurable.

Reformulate the second maximization problem on the RHS of (5) analogously. Then we can

apply the measurable maximum theorem (Theorem 18.19 in Aliprantis and Border, 2006) to

conclude that the RHS of (5) is measurable in G. This implies that η is measurable and,

therefore, t is measurable.

Finally, we verify that any optimal action in segment t(G) is within δ of a(G):

max
a∈[a(G)−δ/2,a(G)]

w(a)[1− t(G)(a)] ≥ max
a∈[a(G)−δ/2,a(G)]

w(a)

[
1− G(a)

1− κη(G)

]
= max

a∈[a(G)−δ/2,a(G)]
w(a)

[
1−G(a)− κη(G)

1− κη(G)
G(a)

]
≥ max

a∈[a(G)−δ/2,a(G)]
w(a)[1−G(a)]− w(θ)

κη(G)

1− κη(G)

> max
a≤a(G)−δ

w(a)[1−G(a)] ≥ max
a≤a(G)−δ

w(a)[1− t(G)(a)],

where the strict inequality follows from (5). Hence, any optimal action in segment t(G) is at

least a(G)− δ. Moreover, for any a > a(G), we have

w (a)

[
1− G(a(G))

1− κη(G)

]
≥ w(a)[1−G(a)]− κη(G)

1− κη(G)
w (a)G(a) > w(a)

[
1− G(a)

1− κη(G)

]
.
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Hence, no action strictly above a(G) is optimal in segment t(G). Thus, the function t has the

desired properties.

Define the function t : ∆(Θ) → ∆(Θ) by

t(G)(x) :=
(1− κ)G(x)

1− κG(a)
1x<a(G) +

G(x)− κG(a)

1− κG(a)
1x≥a(G),

where κ > 0 is small enough such that dt(G)
dG

< 1 + ε. Because a is upper semicontinuous, it

is measurable; it is straightforward to see that t is also measurable.

Next, we show that for every segment G, a(G) is the unique optimal action in segment

t(G). For any a′ > a(G),

w (a) (1− t(G)(a)) = w (a)

[
1− G(a)− κG(a)

1− κG(a)

]
=

w (a) (1−G(a))

1− κG(a)

>
w (a′) (1−G(a′))

1− κG(a)
= w (a′) (1− t(G)(a′)),

where the strict inequality follows because a′ > a, w is strictly increasing, and a is the highest

optimal action. For any a′′ < a(G),

w (a) (1− t(G)(a)) = w (a)
1−G(a)

1− κG(a)

≥ (1− κ)w (a′′) (1−G(a′′)) + κw (a) (1−G(a))

1− κG(a)

>
(1− κ)w (a′′) (1−G(a′′)) + κw (a′′) (1−G(a))

1− κG(a)

= w (a′′)

[
1− (1− κ)G(a′′)

1− κG(a)

]
= w (a′′) (1− t(G)(a′′)),

where the weak inequality holds because a is an optimal action, and the strict inequality

follows since a′′ < a(G) and w is strictly increasing. Hence, t also has the desired properties,

and Assumption 3(b) is verified. ■

Proof of Proposition 1. It suffices to verify Assumptions 1, 2, and 3. Because a(θ) = θ,

uS(a(θ), θ) = 0. Since uS is bounded below by zero, Assumption 1 is satisfied. For Assump-

tion 2, we claim that for every message m ∈ C, one can set θ̂m := maxθ∈m θ. This is because

for every θ ∈ m, uS(a(θ), θ) = 0 = max{θ − θ̂m, 0} = uS

(
a
(
θ̂m

)
, θ
)
. Finally, Assumption 3

holds since we can appeal to Lemma 5 by letting w be the identity function. ■
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C.2 Proof of Proposition 2

If the aggregate market is unimprovable, the fully concealing equilibrium—in which every

type sends the message [θ, θ]—supports the payoffs of the consumer-optimal segmentation.

For the converse, suppose the aggregate market is improvable and let p∗ > θ denote the

lowest uniform monopoly price for the aggregate market. Towards a contradiction, suppose

that there is an interval-message equilibrium that yields ex ante consumer payoffs of at least

w∗ − π∗ − 1/n for every n ∈ N. The monopolist’s payoff in the nth equilibrium is therefore at

most π∗ + 1/n and the welfare loss from exclusion is at most 1/n.

Consequently, for any m > 0 and all n sufficiently large, in the segmentation induced

by the nth equilibrium, there is a set of segments Gm
n whose probability is at least 1 − 1/m

and such that each segment G ∈ Gm
n satisfies: (i) the monopolist’s optimal profit in segment

G exceeds the profit from charging p∗ by at most 1/m, and (ii) at most a fraction 1/m of

types in segment G is excluded. Property (i) implies that for all n sufficiently large, each

G ∈ Gm
n contains types in [p∗, p∗ + 1/m]. Property (ii) implies that for n sufficiently large,

the equilibrium price in each G ∈ Gm
n is at most G−1(1/m). It follows that for m and n large

enough, Gm
n contains a segment with equilibrium price close to θ.

In equilibrium, each type sends whichever available message yields the lowest price, pro-

vided this price is below their valuation. Consequently, for any ε > 0, by properties (i) and

(ii) it holds that for all m and n sufficiently large, types in [θ + ε, p∗] will send messages

that result in the same price and at least one of these messages contains a type that is at

least p∗ + 1/m (otherwise, uniformly lowering the price from p∗ in all these segments would

increase profit, contradicting that p∗ is close to optimal in all segments). But this implies

that all types θ ∈ [p∗, p∗ + 1/m] will in equilibrium send a message resulting in a price close

to θ. By property (i), all segments in Gm
n must therefore result in this low price. But as

m,n → ∞, the probability of Gm
n converges to 1, and because θ is not an optimal uniform

price, equilibrium profits fall strictly below π∗, yielding a contradiction. ■

C.3 Proof of Proposition 3

To establish (a), it suffices to show that trade must happen with probability 1 in any truth-

leaning equilibrium. In any equilibrium of the perturbed game Γε, trade must happen with

probability 1: any type θ that does not trade must fully reveal her type to get payoff ε(θ) > 0,

and the unique optimal action for the monopolist after receiving message {θ} with θ > 0 is

a = θ, resulting in trade. By definition, a truth-leaning equilibrium is a limit point of equilibria

of Γε, and hence trade also happens with probability 1 in any such equilibrium.

To establish (b), fix ε > 0 and an efficient payoff profile (u∗
S, u

∗
R). By Proposition 1, there
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exists a payoff profile (u1
S, u

1
R) that is within ε/2 of (u∗

S, u
∗
R) and that is supported by an

equilibrium e∗. Moreover, the proof of Theorem 1 shows that we can assume that e∗ induces

a finite partitional segmentation and each segment has positive probability.

We modify e∗ to obtain an efficient equilibrium e∗∗ of the unperturbed game that will also

be an equilibrium of some perturbed games: In e∗∗, all consumer types whose payoff is strictly

positive in e∗ send the same message as in e∗; all types whose payoff is zero in e∗ send the

fully revealing messages. The monopolist’s strategy is as in e∗ and beliefs are derived from

Bayes’ rule whenever possible (with skeptical beliefs after off-path messages).

To verify that e∗∗ is an equilibrium of the unperturbed game, note that each consumer

type gets the same payoff in e∗∗ as in e∗, any deviation to an on-path message would yield the

same payoff as in e∗, and any deviation to an off-path message is not profitable. Hence, the

consumer best responds. Moreover, the monopolist’s actions are still optimal: Consider an

on-path message m that is sent with positive probability, and denote the segment and price

induced by message m in e∗ by G and pG, respectively. Under the modified strategy of the

consumer in e∗∗, the segment induced by m is G( · | θ > pG) := (G(θ)−G(pG))/(1−G(pG)).

The monopolist’s profits from charging p under G( · | θ > pG) is therefore

Π̃(p) = p(1−G(p | θ > pG)) =
p(1−G(p))

1−G(pG)
.

Since pG is a maximizer of p(1−G(p)), it also maximizes Π̃(p) among all p ∈ [pG, θ]. Therefore,

the monopolist best responds to m. For any other message, the monopolist holds skeptical

beliefs and best responds as well.

Denote by (u2
S, u

2
R) the payoff profile induced by e∗∗. To see that (u2

S, u
2
R) is within ε of

(u∗
S, u

∗
R), note that because (u∗

S, u
∗
R) and (u2

S, u
2
R) are efficient and the efficiency frontier has

slope −1,

|u∗
R − u2

R| = |u∗
S − u2

S| = |u∗
S − u1

S| <
ε

2
.

It remains to argue that the equilibrium e∗∗ is truth-leaning. Towards this end, for every

n ∈ N and for every θ that does not send a fully revealing message in e∗∗, define εn(θ) =

(θ − p(m))/2n, where m is the message sent by type θ in e∗∗ and p(m) the resulting price,

and for every type θ that sends a fully revealing message in e∗∗, define εn(θ) = θ/n. Then,

for each n, εn(θ) > 0 for all θ and e∗∗ is an equilibrium of the perturbed game Γεn since no

type of the consumer has a profitable deviation, and εn converges uniformly to 0. Therefore,

e∗∗ constitutes a truth-leaning equilibrium, which completes the proof of (b). ■
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C.4 Proof of Proposition 4

Assumptions 1 and 2 can be verified in a manner similar to the proof of Proposition 1. To

verify Assumption 3(a), fix an arbitrary G and a sequence Gn → G. We show that

∀a ∈ A : ∀an → a : lim sup
n

uR(an, Gn) ≤ uR(a,G) and (6)

∀ε > 0 : ∀a ∈ A : ∃an → a : lim inf
n

uR(an, Gn) ≥ uR(a,G)− ε. (7)

This will imply that uR(·, Gn) Γ-converges to uR(·, G) (page 288 in Santambrogio, 2023).22

Propositions 7.4 and 7.5 in Santambrogio (2023) then imply that UR(Gn) → UR(G) (hence

UR(G) is continuous) and the set of optimal actions is upper hemicontinuous.

To verify (6), observe that

lim sup
n

uR(an, Gn)−uR(a,G) ≤ lim sup
n

[uR(an, Gn)−uR(a,Gn)]+lim sup
n

[uR(a,Gn)−uR(a,G)],

the first lim sup on the RHS is weakly negative because uR(·, θ) is upper semicontinuous

and the second lim sup on the RHS is weakly negative by the Portmanteau theorem because

uR(a, θ) is upper semicontinuous in θ (since v(θ) > c(θ)) and Gn → G.

To verify (7), define c−1(a) := max{θ ∈ Θ : c(θ) ≤ a} and fix an arbitrary a. Without

loss of generality, assume G(c−1(a)) > 0 and choose an arbitrary ε ∈ (0, G(c−1(a))). Note

that there is a sequence an → a satisfying an > a and Gn(c
−1(an)) ≥ G(c−1(a))− ε for all n

because Gn → G. Then

uR(a,G) =

∫
(v(θ)− a) d[min{G(θ), G(c−1(a))}]

= lim
n

∫
(v(θ)− a) d[min{Gn(θ), G(c−1(a))}]

≤ lim

∫
(v(θ)− a) d[min{Gn(θ), G(c−1(a))− ε}] + εv(θ)

≤ lim

∫
1c(θ)≤an(v(θ)− a) d[min{Gn(θ), G(c−1(a))− ε}] + εv(θ)

≤ lim

∫
1c(θ)≤an(v(θ)− a) dGn(θ) + εv(θ)

= limuR(an, Gn) + εv(θ)

where the second equality holds because Gn → G and the integrand is continuous, the second

inequality holds because Gn(c
−1(an)) ≥ G(c−1(a))− ε, the third inequality holds because the

22More precisely, it will imply that −uR(·, Gn) Γ-converges to −uR(·, G). Since we are interested in
maximization problems instead of minimization problems, these are the relevant inequalities for us.
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integrand is weakly positive, and the last equality holds because an → a. Given that ε is

arbitrary, (7) follows.

It remains to verify Assumption 3(b). Given ε, δ > 0, we construct two functions t :

∆(Θ) → ∆(Θ) and t : ∆(Θ) → ∆(Θ) that satisfy Assumption 3(b). Define the function

t : ∆(Θ) → ∆(Θ) by

t(G)(x) =
G(x)

G(c−1(a)) + 1− κ
1x≤c−1(a(G)) +

κG(c−1(a)) + (1− κ)G(x)

G(c−1(a)) + 1− κ
1x>c−1(a(G)),

where κ ∈ (0, 1) is small enough such that dt(G)
dG

< 1 + ε. It is not difficult to see that t

is measurable; we next show that for every segment G, a(G) is the unique optimal price in

segment t(G). For any a′ < a(G),

∫ c−1(a)

θ

(v(θ)− a) dt(G)(θ) =

∫ c−1(a)

θ
(v(θ)− a) dG(θ)

G(c−1(a)) + 1− κ

>

∫ c−1(a′)

θ
(v(θ)− a′) dG(θ)

G(c−1(a)) + 1− κ
=

∫ c−1(a′)

θ

(v(θ)− a′) dt(G)(θ),

where the strict inequality holds because a is the lowest optimal price for belief G. Moreover,

for any a′′ > a(G),

∫ c−1(a′′)

θ

(v(θ)− a′′) dt(G)(θ)

=
1

G(c−1(a)) + 1− κ

[
(1− κ)

∫ c−1(a′′)

θ

(v(θ)− a′′) dG(θ) + κ

∫ c−1(a)

θ

(v(θ)− a′′) dG(θ)

]

≤ 1

G(c−1(a)) + 1− κ

[
(1− κ)

∫ c−1(a)

θ

(v(θ)− a) dG(θ) + κ

∫ c−1(a)

θ

(v(θ)− a′′) dG(θ)

]

<
1

G(c−1(a)) + 1− κ

∫ c−1(a)

θ

(v(θ)− a) dG(θ) =

∫ c−1(a)

θ

(v(θ)− a) dt(G)(θ),

where the weak inequality holds because a is an optimal price for belief G, and the strict

inequality follows since a′′ > a(G). Thus, the function t has the desired properties.

Define the function t : ∆(Θ) → ∆(Θ) by

t(G)(x) := max

{
0,

G(x)− κη(G)

1− κη(G)

}
,
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where η(G) solves

η(G)

1− η(G)
2v(θ) = max

a∈[a(G),a(G)+δ/2]
uR(a,G)− max

a≥a(G)+δ
uR(a,G), (8)

and κ ∈ (0, 1) is a small number so that dt(G)
dG

≤ 1 + ε. Note that η(G) is well-defined and

takes values in (0, 1) because the right-hand side is strictly positive and bounded. Because

uR(a,G) =
∫
(v(θ) − a) dGa(θ), where Ga(θ) := min{G(θ), G(c−1(a))}, is a Carathéodory

function, and both Γ1(G) := [a(G), a(G) + δ/2] and Γ2(G) := [a(G) + δ, θ] are weakly mea-

surable correspondences, η is measurable by the measurable maximum theorem. Thus, t is

also measurable.

We verify that any optimal action in segment t(G) is within δ of a(G): First,

max
a∈[a(G),a(G)+δ/2]

∫ c−1(a)

θ

(v(θ)− a) dt(G)(θ) ≥ max
a∈[a(G),a(G)+δ/2]

∫ c−1(a)

θ

(v(θ)− a) dG(θ)

> max
a≥a(G)+δ

∫ c−1(a)

θ

(v(θ)− a) dG(θ) +
η(G)

1− η(G)
v(θ)

≥ max
a≥a(G)+δ

∫ c−1(a)

θ

(v(θ)− a) dt(G)(θ),

where the first inequality follows because t(G) first-order stochastically dominates G, the

strict inequality follows from (8), and the last inequality holds as long as κ is small enough.

Second, for any a < a(G), we have

∫ c−1(a(G))

θ

(v(θ)− a(G)) d

(
G(θ)− κη(G)

1− κη(G)

)
≥

∫ c−1(a)

θ

(v(θ)− a) dG(θ)− κη(G)

1− κη(G)

∫ c−1(a)

θ

(v(θ)− a(G)) d (1−G(θ))

≥
∫ c−1(a)

θ

(v(θ)− a) d

(
G(θ)− κη(G)

1− κη(G)

)
− (a(G)− a)G(c−1(a))

>

∫ c−1(a)

θ

(v(θ)− a) d

(
G(θ)− κη(G)

1− κη(G)

)
.

Hence, no price that has distance at least δ from a(G) can be optimal when the belief is t(G).

Thus, the function t has the desired properties. ■
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C.5 Proof of Proposition 5

With two or more buyers engaged in Bertrand competition for the asset, every equilibrium

involves the highest offer for the asset equaling its expected value conditional on disclosure.

Consider any belief G of the receiver induced in an equilibrium, and define θG := max suppG.

We argue that the expected value of the asset under beliefG, EG[v(θ)], must satisfy v(θG)−ε ≤
EG[v(θ)] ≤ v(θG) for every ε > 0. The first inequality holds because otherwise some seller

type that is inducing belief G would find it profitable to deviate to sending the fully revealing

message. The second inequality holds by definition. Given that ε is arbitrary, we obtain

EG[v(θ)] = v(θG). As v is strictly increasing, G must then assign probability 1 to type

θG. Therefore, every equilibrium belief is degenerate, which implies that every equilibrium is

outcome equivalent to a fully revealing equilibrium. ■
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D Supplementary Appendix

This appendix is organized as follows:

• Appendix D.1 proves that equilibria we consider satisfy the Intuitive Criterion.

• Appendix D.2 proves robustness of our main result in principal-agent settings in which

the sender lacks evidence with positive probability (“Dye evidence”).

• Appendix D.3 describes how the main conclusion of Theorem 1 fails when any one of

Assumptions 1 to 3 is dropped.

• Appendix D.4 proves Proposition 6.

• Appendix D.5 describes our application to policy negotiations.

D.1 Intuitive Criterion

Theorem 3. Every equilibrium of the game survives the Intuitive Criterion.

Proof. Fix an arbitrary equilibrium and let v∗S(θ) denote type θ sender’s interim payoff in this

equilibrium. For a belief µ, denote by BR(µ) := argmaxa∈A
∫
uR(a, θ) dµ(θ) the receiver’s

best response correspondence. For any measurable I ⊆ Θ, define BR(I) as the set of responses

that are optimal for the receiver under some beliefs whose support is contained in I: BR(I) :=⋃
µ:suppµ⊆I BR(µ). Finally, for any off-path message m, let

S(m) :=

{
θ ∈ m : v∗S(θ) > max

a∈BR(m)
uS(a, θ)

}
;

that is, S(m) consists of the types in m whose equilibrium payoff exceeds the highest payoff

attainable when the receiver’s belief is concentrated on m.

For any off-path message m with S(m) ̸= m, and any θ ∈ m \ S(m), we have

v∗S(θ) ≥ uS(a(θ), θ) ≥ min
a∈BR(m\S(m))

uS(a, θ),

where the first inequality follows from the fact that every type gets at least her complete-

information payoff in any equilibrium, and the second inequality holds because the Dirac

measure on θ, δθ, satisfies BR(δθ) ⊆ BR(m \ S(m)). This implies that the equilibrium

((ρ, τ), µ) survives the Intuitive Criterion. ■

D.2 Robustness to Dye Evidence

Herein, we restrict attention to principal-agent settings corresponding to Example 2. We

perturb our game as follows. With probability ζ ∈ (0, 1), the sender does not possess any
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evidence to disclose regardless of her type. Therefore, for every type θ, the sender’s message

space is M(θ) with probability (1 − ζ) and is {Θ} with complementary probability. Denote

this perturbed game by Υζ . In this perturbed game, with probability ζ, the sender cannot

send any evidence and is forced to use the fully-concealing message Θ. This kind of evidence

structure is in the spirit of Dye (1985). Our analysis evaluates the degree to which equilibrium

payoffs are robust to the sender lacking evidence to disclose with small probability.

Definition 1. A payoff profile of the original game Υ0 is Dye-supportable if it is a limit

point of payoff profiles of equilibria of Υζ as ζ → 0.

A Dye-supportable payoff profile is one that is supported by, at the limit, equilibria of

disclosure games that have the Dye evidence structure. We show below that all achievable

payoffs of the principal-agent setting of Example 2 are Dye-supportable, under one additional

assumption listed below.

Assumption 4. The following hold:

(a) The agent’s WTP for every alternative x ̸= x0, namely vS(x, θ) − vS(x0, θ), strictly

increases in her type θ.

(b) The outside option x0 does not maximize vS(x, θ) + vR(x, θ).

Assumption 4 is a mild condition. Part (a) holds whenever X is partially ordered with x0

as the lowest alternative and vS(x, θ) satisfies strict increasing differences. Part (b) reflects

some gains from trade: namely, that the receiver would not choose the outside option if he

believed that the sender is type θ with probability 1. We observe that both (a) and (b) are

satisfied by all three applications considered in Section 4.

Proposition 7. Consider a principal-agent setting that satisfies Assumptions 3 and 4. Then

every achievable payoff profile (u∗
S, u

∗
R) is Dye-supportable.

Proof. As we argued in the main text, both Assumptions 1 and 2 hold in this setting. In

particular, every message m contains a worst-case type θ̂m := maxθ∈m θ, and the worst-case

type of the fully-concealing message Θ is θ̂Θ := θ.

Fix an achievable payoff profile (u∗
S, u

∗
R). For any ε > 0, Theorem 1 delivers an equilibrium

e of the original game Υ0 whose induced finite partitional segmentation achieves payoffs within

ε of (u∗
S, u

∗
R).

For any ζ ∈ (0, 1), choose ξ := ξ(ζ) > 0 so that F
(
(θ − ξ, θ]

)
=

√
ζ, and define the “top”

interval Iζ := (θ− ξ, θ]. We consider the following strategy profile in the perturbed game Υζ .

When the agent has access to all messages in M(θ), we prescribe:

• if θ ∈ Iζ , she sends Θ;
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• if θ /∈ Iζ , she sends the truncated on-path message m̃(θ) := m(θ)∩ [θ, θ− ξ], where m(θ)

is the on-path message sent by type θ in the fixed equilibrium of the original game.

We set the principal’s response after any off-path message m equal to a(θ̂m); after any on-path

message, the principal updates using Bayes’ rule and best responds.

Below, we show that the strategy profile described above is an equilibrium of Υζ for all ζ

sufficiently small. We then show that the sequence of associated equilibrium payoff profiles

converges as ζ → 0 to the payoff profile induced by equilibrium e. Since ε was arbitrary,

(u∗
S, u

∗
R) is Dye-supportable.

23

Step 1: We pin down the principal’s beliefs upon observing Θ and his best response as ζ → 0.

Under the strategy defined above, for every Borel subset B of Θ, Bayes’ rule pins down the

principal’s posterior belief after observing Θ as

µζ
Θ(B) =

∫
B

(
ζ + (1− ζ)1θ∈Iζ

)
dF (θ)∫

Θ

(
ζ + (1− ζ)1θ∈Iζ

)
dF (θ)

=
ζF (B) + (1− ζ)F (B ∩ Iζ)

ζ + (1− ζ)F (Iζ)
. (9)

Since F (Iζ) =
√
ζ, the weight on Iζ in (9) converges to 1 as ζ → 0, and ξ(ζ) → 0; hence

µζ
Θ → δθ as ζ → 0. Then by Assumption 3(a), for all sufficiently small ζ, every best response

to µζ
Θ lies in an arbitrarily small Hausdorff-neighborhood of a∗(δθ).

Step 2: We show that the strategy profile described above is an equilibrium of Υζ for all

sufficiently small ζ.

As in Lemma 1, no type profits from deviating to an off-path message, and since σ is finite

partitional, almost no type has a profitable deviation to a different on-path message other

than Θ. Thus, it suffices to show that no type θ ∈ [θ, θ − ξ] finds it profitable to deviate to

Θ. Let X∗(θ) ⊆ X denote the set of efficient allocations for type θ, i.e.,

X∗(θ) := argmax
x∈X

(
vS(x, θ) + vR(x, θ)

)
,

and for x∗
θ
∈ X∗(θ) let t(x∗

θ
) := vS(x

∗
θ
, θ)− vS(x0, θ). By Assumption 4,

vS(x
∗
θ
, θ)− vS(x0, θ) < vS(x

∗
θ
, θ)− vS(x0, θ) = t(x∗

θ
)

for any θ ∈ [θ, θ − ξ], which implies that vS(x
∗
θ
, θ) − t(x∗

θ
) < vS(x0, θ) for all such types.

23Formally, take a sequence of equilibria (en) whose payoffs converge to (u∗
S , u

∗
R). For each en, there is a

sequence of equilibria ekn of the perturbed games Υ1/k whose payoffs converge to the payoff of en. Then the
payoffs of the sequence of equilibria enn of the perturbed games Υ1/n converges to (u∗

S , u
∗
R).

47



Moreover, since X∗(θ) is compact and vS(·, θ) is continuous for every θ, we can define

Y (ξ) := min
x∈X∗(θ)

([
vS(x, θ)− vS(x0, θ)

]
−
[
vS(x, θ − ξ)− vS(x0, θ − ξ)

])
> 0;

then for every x ∈ X∗(θ) and every θ ∈ [θ, θ − ξ], vS(x, θ)− t(x) ≤ vS(x0, θ)− Y (ξ).

Now take any menu a ∈ a∗(δθ), and let (xa, ta) ∈ a be the option selected by type θ

(ties are broken in the principal’s favor). Optimality under belief δθ implies xa ∈ X∗(θ)

and vS(xa, θ) − ta = vS(x0, θ), hence ta = t(xa). Therefore, any type in [θ, θ − ξ] strictly

prefers the outside option to (xa, ta) by at least Y (ξ), and the same inequality holds for any

other (x, t) ∈ a because type-θ agent’s payoff from (x, t) is at most θ’s outside option payoff.

Consequently, for every a ∈ a∗(δθ) and every θ ∈ [θ, θ − ξ], the outside option is the unique

optimal choice from a.

By continuity of the agent’s payoff in the menu and the definition of Y (ξ), there exists a

Hausdorff-neighborhood E of a∗(δθ) such that for every menu a ∈ E and every θ ∈ [θ, θ − ξ],

the agent still strictly prefers the outside option and hence obtains exactly vS(x0, θ). Because

a∗(·) is upper hemicontinuous by Assumption 3(a) and µζ
Θ → δθ, for all sufficiently small

ζ we have a∗(µζ
Θ) ⊆ E . Therefore, if the principal best responds to Θ by choosing any

aζ(Θ) ∈ a∗(µζ
Θ), then for every θ ∈ [θ, θ − ξ], uS(a

ζ(Θ), θ) = vS(x0, θ). Since Assumption 1

guarantees that each such type’s payoff from using the on-path message is at least vS(x0, θ),

no type in [θ, θ − ξ] can profitably deviate to Θ. This establishes that the strategy profile

defined above is an equilibrium of Υζ for all sufficiently small ζ.

Step 3: We show that as ζ → 0, the sequence of payoff profiles associated with the equilibria

of Υζ constructed above converges to the payoff profile of equilibrium e.

We decompose payoffs by considering contributions from types in Iζ and types in [θ, θ − ξ]

separately.

For types in Iζ , since sender and receiver payoffs are bounded and F (Iζ) =
√
ζ → 0, the

contribution of these types to expected payoffs vanishes as ζ → 0.

For types in [θ, θ − ξ]: as ζ → 0, we have ξ(ζ) → 0, so the truncated messages m̃(θ) =

m(θ) ∩ [θ, θ − ξ] converge to the original messages m(θ). Consequently, the segment induced

by each truncated on-path message converges to the corresponding segment in equilibrium

e. By Assumption 3(a), the receiver’s expected payoff from best responding is continuous in

beliefs, so the receiver’s expected payoff from these types converges to that in equilibrium

e. By upper hemicontinuity of a∗(·) and compactness of A, any sequence of receiver’s best

responses to the truncated segments converges to a best response in the original segments.

Since uS(·, θ) is continuous for each θ and all best responses to a given segment are close-

by (by the construction of equilibrium e in Lemma 2 using Assumption 3(b)), the sender’s
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expected payoff from these types also converges to that in equilibrium e.

Consequently, the payoff profiles of the constructed equilibria of Υζ converge to that of

equilibrium e as ζ → 0. ■

D.3 What if the Key Assumptions Fail?

Herein, we show that our central conclusion does not hold if any assumption is dropped (while

maintaining the other two assumptions).

Example 6 (Assumption 1 fails). Consider the following stylized version of Grossman’s and

Milgrom’s model. The sender’s type is uniformly distributed on Θ = [0, 1] and the receiver

chooses an action a in [0, 1]. The sender’s motives are transparent in that her payoffs uS(a, θ)

do not vary with θ but are strictly increasing and strictly concave in a. The receiver would like

to match the action with the sender’s type and his payoff is uR(a, θ) = −(a−θ)2. Assumption 1

fails in this game: the complete information payoff for the sender of type θ = 1 is higher than

her payoff if the receiver’s beliefs equal the prior.

Here, the unique equilibrium outcome coincides with full revelation. However, given strict

concavity, the best achievable payoff for the sender comes from the receiver obtaining no

information and choosing action 1/2.

Example 7 (Assumption 2 fails). Suppose A = {1, 2}, the sender’s type θ is uniformly dis-

tributed on Θ = [0, 1], the receiver’s payoffs are uR(1, θ) = 1 − θ and uR(2, θ) = θ, and the

sender’s payoffs are uS(1, θ) =
(
1
2

)
1θ= 1

2
+ 1θ> 1

2
and uS(2, θ) =

1
2
. Assumption 2 fails in this

game, as we show. Observe that the complete-information payoff is 0 for types strictly below
1
2
and 1

2
for all other types. We argue that the message m = Θ lacks a worst-case type. If

the putative “worst-case” type θ̂m were assigned to be strictly below 1
2
, then types above 1

2

accrue more than their complete-information payoff; were θ̂m assigned to be above 1
2
, then

types strictly below 1
2
do better than their complete-information payoff.

This failure has implications for the equilibrium outcomes of the disclosure game. For

instance, no equilibrium supports a payoff profile near that of the fully revealing experiment,(
1
4
, 3
4

)
. Were there such an equilibrium, action 2 would have to be played with high proba-

bility whenever the type is strictly above 1
2
and action 1 would have to be played with high

probability whenever the type is strictly below 1
2
. However, following the message m = Θ,

either action 1 is played with probability at least 1
2
and types above 1

2
could profitably deviate

to this message, or action 2 is played with probability at least 1
2
, in which case types below 1

2

could profitably deviate.

Example 8 (Assumption 3 fails). Suppose there are n types, {θ1, . . . , θn} and n+1 actions, A =
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{0, 1, . . . , n}.24 The sender’s payoff is uS(a, θ) = 1a=0 and the receiver’s payoff is uR(a, θ) =

1a=0+n1θ=θa . Assumption 3(b) fails here: every action is optimal under a uniform belief but

whenever the belief is not uniform, action 0 is not optimal.

Given this failure, there are achievable payoff profiles that cannot be (approximately)

supported in the disclosure game. Consider a prior that is a convex combination of a uniform

belief, with weight α, and a point mass at θ1, with weight (1 − α). A segmentation with

two segments, one of which is uniform, achieves a payoff of α to the sender. We argue that

in every equilibrium, however, the sender’s payoff is 0. To see why, observe that following

any message m ̸= Θ, the receiver would not choose action 0. Thus, the only prospect for a

strictly positive payoff for the sender is if the receiver played action 0 with positive probability

following the message m = Θ. That cannot happen in an equilibrium: were the receiver to do

so, every sender-type would send this message with probability 1, which would make action

0 a sub-optimal choice for the receiver.

D.4 Proof of Proposition 6 (Insurance Markets)

Lemma 6. The set A defined in (1) is compact.

Proof. Let {an}n∈N be a sequence in A. Since an is uniformly bounded and D0−Lipschitz

continuous for each n, Arzela-Ascoli’s theorem implies there is a subsequence, also denoted

by {an}, that converges in the supremum-norm to some a. Clearly, a ∈ A. ■

Lemma 7. For all θ, uS(a, θ) is continuous in a. Also, uR(a,G) is upper semicontinuous in

(a,G).

Proof. If an → a then uS(an, θ) = an(θ) → a(θ) = uS(a, θ) and the first claim follows.

For the second claim, we show first that uR(a, θ) is upper semicontinuous in (a, θ). Note

that if an → a, θn → θ, and ε > 0 then ∂an(θn) ⊆ Bε(∂a(θ)) for all n large enough (Theorem

D.6.2.7 in Hiriart-Urruty and Lemaréchal, 2004). Hence, (a, θ) 7→ ∂a(θ) is upper hemicontin-

uous. Since u(D, a, θ) is continuous in (D, a, θ), a maximum theorem (see Lemma 17.30 in

Aliprantis and Border, 2006) implies that uR(a, θ) is upper semicontinuous in (a, θ).

Now consider an → a and Gn → G. By Theorem 25.6 in Billingsley (1995) there are

Yn and Y on a common probability space (Ω,F , P ) with distributions Gn and G such that

24For simplicity, we assume that the prior F is supported on a finite set, but this example can be extended
to a continuum setting.
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Yn(ω) → Y (ω) for all ω. Then

lim sup
n→∞

∫
uR(an, θ) dGn(θ) = lim sup

n→∞

∫
uR(an, Yn(ω)) dP (ω)

≤
∫

uR(a, Y (ω)) dP (ω) =

∫
uR(a, θ) dG(θ)

where the equalities follow from a change of variables and the inequality follows from (reverse)

Fatou’s lemma and the fact that uR(a, θ) is upper semicontinuous in (a, θ). We conclude that

uR(a,G) is upper semicontinuous in (a,G). ■

Lemma 8. Given a ∈ A, G ∈ ∆(Θ), and ε > 0 there is ã ∈ A that is continuously differen-

tiable such that ∥a− ã∥∞ < ε/2 and |uR(ã, G)− uR(a,G)| < ε/2.

Proof. Fix a ∈ A; let E ′ denote the set of θ’s at which a is not differentiable. Because

E ′ is countable, we can find a finite set E ′′ = {θ1, . . . , θM} ⊆ E ′ such that G(E ′ \ E ′′) <

ε/(12w), where w is an upper bound for |uR(a, θ) − uR(b, θ)| for any a, b ∈ A. Let D∗(θ) ∈
argmaxD∈∂a(θ)∩[0,D0] u(D, a, θ); and for each i = 1, . . . ,M , let ℓi denote the supporting hyper-

plane of a at θi with slope D∗(θi).

For any n ∈ N, we can find a piecewise affine function ãn such that ãn ∈ A and ∥ãn−a∥∞ <

1/(9n). Define ân := max{ãn−1/(9n), ℓ1, . . . , ℓM}+1/(9n); it can be shown that ∥ân−ãn∥∞ <

1/(9n), and ân ∈ A for n large enough. We can approximate ân by a differentiable function

an such that ∥an − ân∥∞ ≤ 1/(9n) and |a′n(θ) −D∗(θ)| ≤ 1/(9n) for all θ ∈ E ′′ (Rockafellar

and Wets, 2009, Theorem 2.26).

Since an is convex and differentiable, an → a implies that a′n(θ) → a′(θ) for all θ /∈ E ′. By

Egoroff’s theorem, there exists E ⊆ Θ \E ′ with G(E) < ε/(12w) such that a′n → a uniformly

on Θ \ (E ′ ∪E). Because |a′n(θ)−D∗(θ)| < 1/(9n) for all θ ∈ E ′′, |uR(an, θ)− uR(a, θ)| < ε/3

for any θ ̸∈ (E ′ \ E ′′) ∪ E and all n large enough. Then since G(E ′ \ E ′′) < ε/(12w) and

G(E) < ε/(12w), |uR(an, G)− uR(a,G)| < ε/2 for large enough n. ■

Lemma 9. The receiver’s optimal payoff is continuous in G and the receiver’s optimal actions

are upper hemicontinuous in G.

Proof. Because uR(a,G) is upper semicontinuous (Lemma 7), the optimal payoff UR(G) :=

maxa∈A uR(a,G) is upper semicontinuous by Lemma 17.30 in Aliprantis and Border (2006).

We argue that UR(G) is also lower semicontinuous: Consider Gn → G and suppose towards

contradiction there is ε > 0 such that lim infn UR(Gn) + ε < UR(G). By Lemma 8, there

is a continuously differentiable ã ∈ A such that uR(ã, G) + ε/2 > UR(G). Then uR(ã, θ)

is continuous in θ, and therefore
∫
uR(ã, θ) dGn(θ) →

∫
uR(ã, θ) dG(θ) (since we use the
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weak∗ topology). Hence, for all n large enough, uR(ã, Gn) + ε/2 ≥ uR(ã, G). This implies

uR(ã, Gn) + ε ≥ UR(G), a contradiction.

Finally, we show that a∗(G) = argmaxa∈A uR(a,G) is upper hemicontinuous: Consider

sequences Gn → G and an ∈ a∗(Gn) such that an → a, and suppose towards contradiction

that a ̸∈ a∗(G). Because a ∈ A this implies UR(G) > uR(a,G). Because uR(a,G) is upper

semicontinuous (Lemma 7),

UR(G) > uR(a,G) ≥ lim sup
n→∞

uR(an, Gn) = lim sup
n→∞

UR(Gn).

This contradicts lower semicontinuity of UR. ■

Proof of Proposition 6. Observe that for each type θ, the sender’s no-insurance payoff is

θv(w − ℓ) + (1 − θ)v(w). Assumption 1 holds because if the insuree is known to be of type

θ, the insurer will offer a contract that extracts all surplus leaving the insuree with her

no-insurance payoff. Given that the no-insurance payoff is strictly decreasing in θ, for any

m ∈ C, the worst-case type is maxθ∈m θ, which verifies Assumption 2. Assumption 3(a) follows

from Lemma 9. Instead of verifying Assumption 3(b), we verify its alternative in Remark 1.

Because uR(a, θ) is strictly concave in a for each θ,25 for any G ∈ ∆(Θ), any a′, a′′ ∈ a∗(G)

satisfy a′ = a′′ G-almost everywhere. The alternative assumption holds by setting t(G) = G

and H = H = t(G). ■

D.5 Bargaining Over Policies

This section applies our analysis to models of policy negotiations with incomplete information

that build on Romer and Rosenthal (1978).26 A policy a ∈ R is jointly chosen by the proposer

and the vetoer. The proposer’s payoff from policy a, u(a), is strictly increasing in a. The

vetoer’s payoff, v(a, θ), is strictly single-peaked in a with a unique maximizer θ and symmetric

around the maximizer; we call the vetoer’s ideal policy θ her type. Her type is her private

25Take λ ∈ (0, 1), any a′, a′′ ∈ A with a′ ̸= a′′, and any D′ ∈ argmaxD∈∂a′(θ)∩[0,D0] u(a
′, D, θ) and

D′′ ∈ argmaxD∈∂a′′(θ)∩[0,D0] u(a
′′, D, θ). Then

λuR(a
′, θ) + (1− λ)uR(a

′′, θ) < w − θℓ− (1− θ)v−1((λa′(θ) + (1− λ)a′′(θ)) + θ(λD′ + (1− λ)D′′))−
θv−1((λa′(θ) + (1− λ)a′′(θ))− (1− θ)(λD′ + (1− λ)D′′))

≤ uR(λa
′ + (1− λ)a′′, θ),

where the first inequality holds because v−1 is strictly convex (since v is strictly concave), and the second
equality follows from the fact that λD′ + (1 − λ)D′′ ∈ ∂(λa′ + (1 − λ)a′′)(θ) = λ∂a′(θ) + (1 − λ)∂a′′(θ) for
each θ (Theorem D.4.1.1 in Hiriart-Urruty and Lemaréchal, 2004).

26The literature has studied various formulations of veto bargaining with incomplete information; see, for
example, Matthews (1989), Kartik, Kleiner, and Van Weelden (2021), Ali, Kartik, and Kleiner (2023), and
Kim, Kim, and Van Weelden (2025).
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information, and is drawn according to an absolutely continuous CDF F on Θ = [θ, θ] with

θ < ∞. For simplicity, we assume θ ≥ 0. Once the proposer proposes a policy a, the vetoer

can accept or reject. If she accepts, the proposed policy prevails; if she rejects, then the

status-quo policy aQ = 0 is preserved. Given the proposer’s payoffs, she never proposes any

a < 0. Restricting attention to a ≥ 0, the vetoer accepts if and only if a ≤ 2θ. Therefore, we

assume that proposals lie in [0, 2θ].

We augment this game with a disclosure stage, with the following timing. The vetoer

first observes her type θ and sends a message m ∈ M(θ) to the proposer. The proposer then

proposes a policy a. The type-θ vetoer’s payoff is given by uS(a, θ) = max{v(a, θ), v(0, θ)},
and the proposer’s payoff is given by uR(a, θ) = (u(a)− u(0))1a≤2θ. For every θ ∈ Θ, uS(·, θ)
is continuous, and uR(·, θ) is upper semicontinuous.

We note that this setting does not feature transferable utility and, unlike monopoly pric-

ing, the sender and receiver may have aligned preferences that favor a higher action to aQ.

Nevertheless, the complete-information payoff is the lowest for a sender-type θ because the

receiver would then propose action 2θ, which results in the same payoff as the status quo.

In this setting, the implications of information design have not been characterized; never-

theless, the equivalence between design and disclosure holds.

Proposition 8. For every achievable payoff profile (u∗
S, u

∗
R) and every ε > 0, there is an

equilibrium of the disclosure game that supports payoffs within ε of (u∗
S, u

∗
R).

Proof. We verify Assumptions 1 to 3. Because a(θ) = 2θ and v is symmetric around θ,

v(a(θ), θ) = v(0, θ). Consequently, uS(a(θ), θ) = v(0, θ). For every θ ∈ Θ, uS(a, θ) is bounded

below by v(0, θ), and hence Assumption 1 must hold. Assumption 2 also holds because for

every message m ∈ C, one can set θ̂m := maxθ∈m θ. Finally, by re-writing the proposer’s

payoff as uR(b, θ) = w(b)1b≤θ, where b = a/2 and w(b) := u(2b)−u(0), Lemma 5 implies that

Assumption 3 holds since w is continuous and strictly increasing by assumption. ■
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